OpenVINO TorchDynamo バックエンドによる Stable Diffusion v2.1¶
この Jupyter ノートブックは、ローカルへのインストール後にのみ起動できます。
Stable Diffusion v2 は、Stability AI と LAION の研究者とエンジニアによって作成された、テキストから画像への潜在拡散モデルである Stable Diffusion の次世代モデルです。
一般に、拡散モデルは、画像などの対象サンプルを取得するために、ランダムなガウスノイズを段階的に除去するようにトレーニングされたマシンラーニング・システムです。拡散モデルは、画像データを生成するため最先端の結果を達成することが示されています。しかし、拡散モデルには、逆ノイズ除去プロセスが遅いという欠点があります。さらに、このモデルはピクセル空間で動作するため大量のメモリーを消費し、高解像度の画像を生成するには高いコストがかかります。そのため、このモデルをトレーニングし、推論に使用するのは困難です。OpenVINO は、インテルのハードウェア上でモデル推論を実行する機能を提供し、誰もが拡散モデルの素晴らしい世界への扉を開くことができます。
このノートブックでは、テキストから画像への変換および画像から画像への変換タスクで、Diffusers ライブラリーと OpenVINO TorchDynamo バックエンドを使用して stable diffusion モデルを実行する方法を示します。
これには次の手順が含まれます。
PyTorch モデルを使用してパイプラインを作成します。
OpenVINO TorchDynamo バックエンドを使用して OpenVINO 最適化を追加します。
OpenVINO を使用して Stable Diffusion パイプラインを実行します。
目次¶
import sys
from IPython.display import HTML, display
sys.path.append("../utils")
from ipython_exit import exit
if sys.platform == "win32":
display(HTML("""<div class="alert alert-danger">Currently notebook does not support Windows platform"""))
exit()
必要条件¶
%pip install -q torch transformers diffusers gradio ipywidgets --extra-index-url https://download.pytorch.org/whl/cpu
%pip install -q "openvino>=2023.3.0"
DEPRECATION: pytorch-lightning 1.6.5 has a non-standard dependency specifier torch>=1.8.*. pip 24.1 will enforce this behaviour change. A possible replacement is to upgrade to a newer version of pytorch-lightning or contact the author to suggest that they release a version with a conforming dependency specifiers. Discussion can be found at https://github.com/pypa/pip/issues/12063
Note: you may need to restart the kernel to use updated packages.
DEPRECATION: pytorch-lightning 1.6.5 has a non-standard dependency specifier torch>=1.8.*. pip 24.1 will enforce this behaviour change. A possible replacement is to upgrade to a newer version of pytorch-lightning or contact the author to suggest that they release a version with a conforming dependency specifiers. Discussion can be found at https://github.com/pypa/pip/issues/12063
Note: you may need to restart the kernel to use updated packages.
import gradio as gr
import random
import torch
import time
from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline
import ipywidgets as widgets
2024-02-10 00:40:19.136206: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable TF_ENABLE_ONEDNN_OPTS=0. 2024-02-10 00:40:19.170875: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
2024-02-10 00:40:19.867185: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT
/opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-609/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/diffusers/utils/outputs.py:63: UserWarning: torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead.
torch.utils._pytree._register_pytree_node(
Diffusers ライブラリーと Stable Diffusion¶
Stable Diffusion v2.1 を使用するには、Hugging Face Diffusers ライブラリーを使用します。Stable Diffusion モデルを試すために、Diffusers は他の Diffusers パイプラインと同様に StableDiffusionPipeline と StableDiffusionImg2ImgPipeline を公開します。以下のコードは、stable-diffusion-2-1-base
モデルを使用して StableDiffusionPipeline
を作成する方法を示しています。
model_id = "stabilityai/stable-diffusion-2-1-base"
# Pipeline for text-to-image generation
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float32)
Loading pipeline components...: 0%| | 0/6 [00:00<?, ?it/s]
OpenVINO TorchDynamo バックエンド¶
OpenVINO TorchDynamo バックエンドを使用すると、元の PyTorch スクリプトに最小限の変更を加えるだけで、PyTorch モデルの OpenVINO サポートを有効にすることができます。PyTorch コードを最適化されたカーネルに JIT コンパイルすることで、コードを高速化します: デフォルトでは、Torch コードは Eager モードで実行されますが、torch.compile を使用すると、次の手順が実行されます。
- グラフの取得 - モデルは、次のいずれかのサブグラフのブロックとして書き換えられます。
- TorchDynamo によってコンパイルおよび “フラット化” されます。
- サポートされていない Python 構造 (制御フローコードなど) は、eager モードにフォールバックします。
- グラフの下降 - すべての PyTorch 操作は、選択されたバックエンド固有のカーネル構成に分解されます。
- グラフのコンパイル - カーネルは、対応する低レベルのデバイス固有の操作を呼び出します。
推論用のデバイスを選択し、最初のアプリケーションの実行後に、最適化されたモデルファイルをハードドライブに保存するかどうかを有効または無効にします。これにより、次のアプリケーションの実行でそれらが使用できるようになり、推論のレイテンシーが短縮されます。利用可能な環境変数オプションの詳細を参照。
from openvino import Core
core = Core()
device = widgets.Dropdown(
options=core.available_devices + ["AUTO"],
value="CPU",
description="Device:",
disabled=False,
)
device
Dropdown(description='Device:', options=('CPU', 'AUTO'), value='CPU')
model_caching = widgets.Dropdown(
options=[True, False],
value=True,
description="Model caching:",
disabled=False,
)
model_caching
Dropdown(description='Model caching:', options=(True, False), value=True)
torch.compile() メソッドを使用するには、import 文を追加して OpenVINO バックエンドを定義するだけです。
# this import is required to activate the openvino backend for torchdynamo
import openvino.torch # noqa: F401
pipe.unet = torch.compile(pipe.unet, backend="openvino", options={"device": device.value, "model_caching": model_caching.value})
**NOTE**: Read more about available `OpenVINO
backends <https://docs.openvino.ai/2024/openvino-workflow/torch-compile.html#how-to-use>`__
注: 現在、PyTorch は Windows* 上で torch.compile 機能を公式にはサポートしていません。Windows* でアクセスする場合は、次の手順に従ってください。
画像生成を実行¶
prompt = "a photo of an astronaut riding a horse on mars"
image = pipe(prompt).images[0]
image
0%| | 0/50 [00:00<?, ?it/s]
インタラクティブなデモ¶
これで、デモを開始し、推論モードを選択し、プロンプト (および Image-to-Image 生成用の入力画像) を定義し、推論パイプラインを実行できます。オプションで、いくつかの入力パラメーターを変更することもできます。
time_stamps = []
def callback(iter, t, latents):
time_stamps.append(time.time())
def error_str(error, title="Error"):
return f"""#### {title}
{error}""" if error else ""
def on_mode_change(mode):
return gr.update(visible=mode == modes['img2img']), \
gr.update(visible=mode == modes['txt2img'])
def inference(inf_mode, prompt, guidance=7.5, steps=25, width=768, height=768, seed=-1, img=None, strength=0.5, neg_prompt=""):
if seed == -1:
seed = random.randint(0, 10000000)
generator = torch.Generator().manual_seed(seed)
res = None
global time_stamps, pipe
time_stamps = []
try:
if inf_mode == modes['txt2img']:
if type(pipe).__name__ != "StableDiffusionPipeline":
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float32)
pipe.unet = torch.compile(pipe.unet, backend="openvino")
res = pipe(prompt,
negative_prompt=neg_prompt,
num_inference_steps=int(steps),
guidance_scale=guidance,
width=width,
height=height,
generator=generator,
callback=callback,
callback_steps=1).images
elif inf_mode == modes['img2img']:
if img is None:
return None, None, gr.update(visible=True, value=error_str("Image is required for Image to Image mode"))
if type(pipe).__name__ != "StableDiffusionImg2ImgPipeline":
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(model_id, torch_dtype=torch.float32)
pipe.unet = torch.compile(pipe.unet, backend="openvino")
res = pipe(prompt,
negative_prompt=neg_prompt,
image=img,
num_inference_steps=int(steps),
strength=strength,
guidance_scale=guidance,
generator=generator,
callback=callback,
callback_steps=1).images
except Exception as e:
return None, None, gr.update(visible=True, value=error_str(e))
warmup_duration = time_stamps[1] - time_stamps[0]
generation_rate = (steps - 1) / (time_stamps[-1] - time_stamps[1])
res_info = "Warm up time: " + str(round(warmup_duration, 2)) + " secs "
if (generation_rate >= 1.0):
res_info = res_info + ", Performance: " + str(round(generation_rate, 2)) + " it/s "
else:
res_info = res_info + ", Performance: " + str(round(1 / generation_rate, 2)) + " s/it "
return res, gr.update(visible=True, value=res_info), gr.update(visible=False, value=None)
modes = {
'txt2img': 'Text to Image',
'img2img': 'Image to Image',
}
with gr.Blocks(css="style.css") as demo:
gr.HTML(
f"""
Model used: {model_id}
"""
)
with gr.Row():
with gr.Column(scale=60):
with gr.Group():
prompt = gr.Textbox("a photograph of an astronaut riding a horse", label="Prompt", max_lines=2)
neg_prompt = gr.Textbox("frames, borderline, text, character, duplicate, error, out of frame, watermark, low quality, ugly, deformed, blur", label="Negative prompt")
res_img = gr.Gallery(label="Generated images", show_label=False)
error_output = gr.Markdown(visible=False)
with gr.Column(scale=40):
generate = gr.Button(value="Generate")
with gr.Group():
inf_mode = gr.Dropdown(list(modes.values()), label="Inference Mode", value=modes['txt2img'])
with gr.Column(visible=False) as i2i:
image = gr.Image(label="Image", height=128, type="pil")
strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5)
with gr.Group():
with gr.Row() as txt2i:
width = gr.Slider(label="Width", value=512, minimum=64, maximum=1024, step=8)
height = gr.Slider(label="Height", value=512, minimum=64, maximum=1024, step=8)
with gr.Group():
with gr.Row():
steps = gr.Slider(label="Steps", value=20, minimum=1, maximum=50, step=1)
guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15)
seed = gr.Slider(-1, 10000000, label='Seed (-1 = random)', value=-1, step=1)
res_info = gr.Markdown(visible=False)
inf_mode.change(on_mode_change, inputs=[inf_mode], outputs=[
i2i, txt2i], queue=False)
inputs = [inf_mode, prompt, guidance, steps,
width, height, seed, image, strength, neg_prompt]
outputs = [res_img, res_info, error_output]
prompt.submit(inference, inputs=inputs, outputs=outputs)
generate.click(inference, inputs=inputs, outputs=outputs)
try:
demo.queue().launch(debug=False)
except Exception:
demo.queue().launch(share=True, debug=False)
# if you are launching remotely, specify server_name and server_port
# demo.launch(server_name='your server name', server_port='server port in int')
# Read more in the docs: https://gradio.app/docs/
Running on local URL: http://127.0.0.1:7860 To create a public link, set share=True in launch().
Automatic1111 Stable Diffusion WebUI は、Stable Diffusion ベースの画像生成用のブラウザーベースのインターフェイスをホストするオープンソース・リポジトリーです。これにより、ユーザーはテキストプロンプトから現実的で創造的な画像を作成できます。Stable Diffusion WebUI は、OpenVINO torch.compile 機能を活用することにより、インテル® CPU、インテル® 統合 GPU、およびインテル® ディスクリート GPU でサポートされます。詳しい手順は、Stable Diffusion WebUI リポジトリーで入手できます。