画像分類モデルの量子化

この Jupyter ノートブックはオンラインで起動でき、ブラウザーのウィンドウで対話型環境を開きます。ローカルにインストールすることもできます。次のオプションのいずれかを選択します。

Binder Google Colab GitHub

このチュートリアルでは、NNCF を使用して画像分類モデルに INT8 量子化を適用する方法を示します。Cifar10 データセットでトレーニングされた MobileNet V2 モデルを使用します。このコードは、カスタムモデルやデータセットに拡張できるように設計されています。このチュートリアルでは、NNCF でモデルの量子化を実行するため OpenVINO バックエンドを使用します。PyTorch モデルに量子化を適用する方法に興味がある場合は、こちらチュートリアルを確認してください。

このチュートリアルは次のステップで構成されます。

  • 量子化用のモデルを準備します。

  • データロード機能を定義します。

  • 量子化を行います。

  • 元のモデルと量子化されたモデルの精度を比較します。

  • 元のモデルと量子化されたモデルのパフォーマンスを比較します。

  • 1 枚の画像で結果を比較します。

目次

# Install openvino package
%pip install -q "openvino>=2023.1.0" "nncf>=2.6.0"
Note: you may need to restart the kernel to use updated packages.
from pathlib import Path

# Set the data and model directories
DATA_DIR = Path("data")
MODEL_DIR = Path('model')
model_repo = 'pytorch-cifar-models'

DATA_DIR.mkdir(exist_ok=True)
MODEL_DIR.mkdir(exist_ok=True)

モデルの準備

モデルの準備には次の手順があります。

  • PyTorch モデルをダウンロードします。

  • モデル変換 Python API を使用してモデルを OpenVINO 中間表現形式 (IR) に変換します。

  • 変換されたモデルをディスク上でシリアル化します。

import sys

if not Path(model_repo).exists():
    !git clone https://github.com/chenyaofo/pytorch-cifar-models.git

sys.path.append(model_repo)
Cloning into 'pytorch-cifar-models'...

remote: Enumerating objects: 282, done.

remote: Counting objects:   0% (1/281)
remote: Counting objects:   1% (3/281)
remote: Counting objects:   2% (6/281)
remote: Counting objects:   3% (9/281)
remote: Counting objects:   4% (12/281)
remote: Counting objects:   5% (15/281)
remote: Counting objects:   6% (17/281)
remote: Counting objects:   7% (20/281)
remote: Counting objects:   8% (23/281)
remote: Counting objects:   9% (26/281)
remote: Counting objects:  10% (29/281)
remote: Counting objects:  11% (31/281)
remote: Counting objects:  12% (34/281)
remote: Counting objects:  13% (37/281)
remote: Counting objects:  14% (40/281)
remote: Counting objects:  15% (43/281)
remote: Counting objects:  16% (45/281)
remote: Counting objects:  17% (48/281)
remote: Counting objects:  18% (51/281)
remote: Counting objects:  19% (54/281)
remote: Counting objects:  20% (57/281)
remote: Counting objects:  21% (60/281)
remote: Counting objects:  22% (62/281)
remote: Counting objects:  23% (65/281)
remote: Counting objects:  24% (68/281)
remote: Counting objects:  25% (71/281)
remote: Counting objects:  26% (74/281)
remote: Counting objects:  27% (76/281)
remote: Counting objects:  28% (79/281)
remote: Counting objects:  29% (82/281)
remote: Counting objects:  30% (85/281)
remote: Counting objects:  31% (88/281)
remote: Counting objects:  32% (90/281)
remote: Counting objects:  33% (93/281)
remote: Counting objects:  34% (96/281)
remote: Counting objects:  35% (99/281)
remote: Counting objects:  36% (102/281)
remote: Counting objects:  37% (104/281)
remote: Counting objects:  38% (107/281)
remote: Counting objects:  39% (110/281)
remote: Counting objects:  40% (113/281)
remote: Counting objects:  41% (116/281)
remote: Counting objects:  42% (119/281)
remote: Counting objects:  43% (121/281)
remote: Counting objects:  44% (124/281)
remote: Counting objects:  45% (127/281)
remote: Counting objects:  46% (130/281)
remote: Counting objects:  47% (133/281)
remote: Counting objects:  48% (135/281)
remote: Counting objects:  49% (138/281)
remote: Counting objects:  50% (141/281)
remote: Counting objects:  51% (144/281)
remote: Counting objects:  52% (147/281)
remote: Counting objects:  53% (149/281)
remote: Counting objects:  54% (152/281)
remote: Counting objects:  55% (155/281)
remote: Counting objects:  56% (158/281)
remote: Counting objects:  57% (161/281)
remote: Counting objects:  58% (163/281)
remote: Counting objects:  59% (166/281)
remote: Counting objects:  60% (169/281)
remote: Counting objects:  61% (172/281)
remote: Counting objects:  62% (175/281)
remote: Counting objects:  63% (178/281)
remote: Counting objects:  64% (180/281)
remote: Counting objects:  65% (183/281)
remote: Counting objects:  66% (186/281)
remote: Counting objects:  67% (189/281)
remote: Counting objects:  68% (192/281)
remote: Counting objects:  69% (194/281)
remote: Counting objects:  70% (197/281)
remote: Counting objects:  71% (200/281)
remote: Counting objects:  72% (203/281)
remote: Counting objects:  73% (206/281)
remote: Counting objects:  74% (208/281)
remote: Counting objects:  75% (211/281)
remote: Counting objects:  76% (214/281)
remote: Counting objects:  77% (217/281)
remote: Counting objects:  78% (220/281)
remote: Counting objects:  79% (222/281)
remote: Counting objects:  80% (225/281)
remote: Counting objects:  81% (228/281)
remote: Counting objects:  82% (231/281)
remote: Counting objects:  83% (234/281)
remote: Counting objects:  84% (237/281)
remote: Counting objects:  85% (239/281)
remote: Counting objects:  86% (242/281)
remote: Counting objects:  87% (245/281)
remote: Counting objects:  88% (248/281)
remote: Counting objects:  89% (251/281)
remote: Counting objects:  90% (253/281)
remote: Counting objects:  91% (256/281)
remote: Counting objects:  92% (259/281)
remote: Counting objects:  93% (262/281)
remote: Counting objects:  94% (265/281)
remote: Counting objects:  95% (267/281)
remote: Counting objects:  96% (270/281)
remote: Counting objects:  97% (273/281)
remote: Counting objects:  98% (276/281)
remote: Counting objects:  99% (279/281)
remote: Counting objects: 100% (281/281)
remote: Counting objects: 100% (281/281), done.

remote: Compressing objects:   1% (1/96)
remote: Compressing objects:   2% (2/96)
remote: Compressing objects:   3% (3/96)
remote: Compressing objects:   4% (4/96)
remote: Compressing objects:   5% (5/96)
remote: Compressing objects:   6% (6/96)
remote: Compressing objects:   7% (7/96)
remote: Compressing objects:   8% (8/96)
remote: Compressing objects:   9% (9/96)
remote: Compressing objects:  10% (10/96)
remote: Compressing objects:  11% (11/96)
remote: Compressing objects:  12% (12/96)
remote: Compressing objects:  13% (13/96)
remote: Compressing objects:  14% (14/96)
remote: Compressing objects:  15% (15/96)
remote: Compressing objects:  16% (16/96)
remote: Compressing objects:  17% (17/96)
remote: Compressing objects:  18% (18/96)
remote: Compressing objects:  19% (19/96)
remote: Compressing objects:  20% (20/96)
remote: Compressing objects:  21% (21/96)
remote: Compressing objects:  22% (22/96)
remote: Compressing objects:  23% (23/96)
remote: Compressing objects:  25% (24/96)
remote: Compressing objects:  26% (25/96)
remote: Compressing objects:  27% (26/96)
remote: Compressing objects:  28% (27/96)
remote: Compressing objects:  29% (28/96)
remote: Compressing objects:  30% (29/96)
remote: Compressing objects:  31% (30/96)
remote: Compressing objects:  32% (31/96)
remote: Compressing objects:  33% (32/96)
remote: Compressing objects:  34% (33/96)
remote: Compressing objects:  35% (34/96)
remote: Compressing objects:  36% (35/96)
remote: Compressing objects:  37% (36/96)
remote: Compressing objects:  38% (37/96)
remote: Compressing objects:  39% (38/96)
remote: Compressing objects:  40% (39/96)
remote: Compressing objects:  41% (40/96)
remote: Compressing objects:  42% (41/96)
remote: Compressing objects:  43% (42/96)
remote: Compressing objects:  44% (43/96)
remote: Compressing objects:  45% (44/96)
remote: Compressing objects:  46% (45/96)
remote: Compressing objects:  47% (46/96)
remote: Compressing objects:  48% (47/96)
remote: Compressing objects:  50% (48/96)
remote: Compressing objects:  51% (49/96)
remote: Compressing objects:  52% (50/96)
remote: Compressing objects:  53% (51/96)
remote: Compressing objects:  54% (52/96)
remote: Compressing objects:  55% (53/96)
remote: Compressing objects:  56% (54/96)
remote: Compressing objects:  57% (55/96)
remote: Compressing objects:  58% (56/96)
remote: Compressing objects:  59% (57/96)
remote: Compressing objects:  60% (58/96)
remote: Compressing objects:  61% (59/96)
remote: Compressing objects:  62% (60/96)
remote: Compressing objects:  63% (61/96)
remote: Compressing objects:  64% (62/96)
remote: Compressing objects:  65% (63/96)
remote: Compressing objects:  66% (64/96)
remote: Compressing objects:  67% (65/96)
remote: Compressing objects:  68% (66/96)
remote: Compressing objects:  69% (67/96)
remote: Compressing objects:  70% (68/96)
remote: Compressing objects:  71% (69/96)
remote: Compressing objects:  72% (70/96)
remote: Compressing objects:  73% (71/96)
remote: Compressing objects:  75% (72/96)
remote: Compressing objects:  76% (73/96)
remote: Compressing objects:  77% (74/96)
remote: Compressing objects:  78% (75/96)
remote: Compressing objects:  79% (76/96)
remote: Compressing objects:  80% (77/96)
remote: Compressing objects:  81% (78/96)
remote: Compressing objects:  82% (79/96)
remote: Compressing objects:  83% (80/96)
remote: Compressing objects:  84% (81/96)
remote: Compressing objects:  85% (82/96)
remote: Compressing objects:  86% (83/96)
remote: Compressing objects:  87% (84/96)
remote: Compressing objects:  88% (85/96)
remote: Compressing objects:  89% (86/96)
remote: Compressing objects:  90% (87/96)
remote: Compressing objects:  91% (88/96)
remote: Compressing objects:  92% (89/96)
remote: Compressing objects:  93% (90/96)
remote: Compressing objects:  94% (91/96)
remote: Compressing objects:  95% (92/96)
remote: Compressing objects:  96% (93/96)
remote: Compressing objects:  97% (94/96)
remote: Compressing objects:  98% (95/96)
remote: Compressing objects: 100% (96/96)
remote: Compressing objects: 100% (96/96), done.

Receiving objects:   0% (1/282)
Receiving objects:   1% (3/282)
Receiving objects:   2% (6/282)
Receiving objects:   3% (9/282)
Receiving objects:   4% (12/282)
Receiving objects:   5% (15/282)
Receiving objects:   6% (17/282)
Receiving objects:   7% (20/282)
Receiving objects:   8% (23/282)
Receiving objects:   9% (26/282)
Receiving objects:  10% (29/282)
Receiving objects:  11% (32/282)
Receiving objects:  12% (34/282)
Receiving objects:  13% (37/282)
Receiving objects:  14% (40/282)
Receiving objects:  15% (43/282)
Receiving objects:  16% (46/282)
Receiving objects:  17% (48/282)
Receiving objects:  18% (51/282)
Receiving objects:  19% (54/282)
Receiving objects:  20% (57/282)
Receiving objects:  21% (60/282)
Receiving objects:  22% (63/282)
Receiving objects:  23% (65/282)
Receiving objects:  24% (68/282)
Receiving objects:  25% (71/282)
Receiving objects:  26% (74/282)
Receiving objects:  27% (77/282)
Receiving objects:  28% (79/282)
Receiving objects:  29% (82/282)
Receiving objects:  30% (85/282)
Receiving objects:  31% (88/282)
Receiving objects:  32% (91/282)
Receiving objects:  33% (94/282)
Receiving objects:  34% (96/282)
Receiving objects:  35% (99/282)
Receiving objects:  36% (102/282)
Receiving objects:  37% (105/282)
Receiving objects:  38% (108/282)
Receiving objects:  39% (110/282)
Receiving objects:  40% (113/282)
Receiving objects:  41% (116/282)
Receiving objects:  42% (119/282)
Receiving objects:  43% (122/282)
Receiving objects:  44% (125/282)
Receiving objects:  45% (127/282)
Receiving objects:  46% (130/282)
Receiving objects:  47% (133/282)
Receiving objects:  48% (136/282)
Receiving objects:  49% (139/282)
Receiving objects:  50% (141/282)
Receiving objects:  51% (144/282)
Receiving objects:  52% (147/282)
Receiving objects:  53% (150/282)
Receiving objects:  54% (153/282)
Receiving objects:  55% (156/282)
Receiving objects:  56% (158/282)
Receiving objects:  57% (161/282)
Receiving objects:  58% (164/282)
Receiving objects:  59% (167/282)
Receiving objects:  60% (170/282)
Receiving objects:  61% (173/282)
Receiving objects:  62% (175/282)
Receiving objects:  63% (178/282)
Receiving objects:  64% (181/282)
Receiving objects:  65% (184/282)
Receiving objects:  66% (187/282)
Receiving objects:  67% (189/282)
Receiving objects:  68% (192/282)
Receiving objects:  69% (195/282)
Receiving objects:  70% (198/282)
Receiving objects:  71% (201/282)
Receiving objects:  72% (204/282)
Receiving objects:  73% (206/282)
Receiving objects:  74% (209/282)
Receiving objects:  75% (212/282)
Receiving objects:  76% (215/282)
Receiving objects:  77% (218/282)
Receiving objects:  78% (220/282)
Receiving objects:  79% (223/282), 1.71Mib | 3.35Mib/s
Receiving objects:  80% (226/282), 1.71Mib | 3.35Mib/s
Receiving objects:  80% (228/282), 1.71Mib | 3.35Mib/s
Receiving objects:  81% (229/282), 3.54Mib | 3.45Mib/s
Receiving objects:  82% (232/282), 3.54Mib | 3.45Mib/s
Receiving objects:  83% (235/282), 3.54Mib | 3.45Mib/s
Receiving objects:  84% (237/282), 5.36Mib | 3.48Mib/s
Receiving objects:  85% (240/282), 5.36Mib | 3.48Mib/s
Receiving objects:  86% (243/282), 5.36Mib | 3.48Mib/s
Receiving objects:  86% (243/282), 7.20Mib | 3.49Mib/s
Receiving objects:  87% (246/282), 7.20Mib | 3.49Mib/s
Receiving objects:  88% (249/282), 7.20Mib | 3.49Mib/s
Receiving objects:  89% (251/282), 7.20Mib | 3.49Mib/s

remote: Total 282 (delta 135), reused 269 (delta 128), pack-reused 1

Receiving objects:  90% (254/282), 9.03 MiB | 3.50 MiB/s
Receiving objects:  91% (257/282), 9.03 MiB | 3.50 MiB/s
Receiving objects:  92% (260/282), 9.03 MiB | 3.50 MiB/s
Receiving objects:  93% (263/282), 9.03 MiB | 3.50 MiB/s
Receiving objects:  94% (266/282), 9.03 MiB | 3.50 MiB/s
Receiving objects:  95% (268/282), 9.03 MiB | 3.50 MiB/s
Receiving objects:  96% (271/282), 9.03 MiB | 3.50 MiB/s
Receiving objects:  97% (274/282), 9.03 MiB | 3.50 MiB/s
Receiving objects:  98% (277/282), 9.03 MiB | 3.50 MiB/s
Receiving objects:  99% (280/282), 9.03 MiB | 3.50 MiB/s
Receiving objects: 100% (282/282), 9.03 MiB | 3.50 MiB/s
Receiving objects: 100% (282/282), 9.22 MiB | 3.52 MiB/s, done.

Resolving deltas:   0% (0/135)
Resolving deltas:   2% (3/135)
Resolving deltas:   5% (8/135)
Resolving deltas:   6% (9/135)
Resolving deltas:  12% (17/135)
Resolving deltas:  17% (24/135)
Resolving deltas:  23% (32/135)
Resolving deltas:  27% (37/135)
Resolving deltas:  28% (39/135)
Resolving deltas:  29% (40/135)
Resolving deltas:  30% (41/135)
Resolving deltas:  31% (42/135)
Resolving deltas:  32% (44/135)
Resolving deltas:  34% (47/135)
Resolving deltas:  40% (54/135)
Resolving deltas:  45% (61/135)
Resolving deltas:  47% (64/135)
Resolving deltas:  51% (69/135)
Resolving deltas:  57% (78/135)
Resolving deltas:  58% (79/135)
Resolving deltas:  60% (81/135)
Resolving deltas:  62% (84/135)
Resolving deltas:  71% (96/135)
Resolving deltas: 100% (135/135)
Resolving deltas: 100% (135/135), done.
from pytorch_cifar_models import cifar10_mobilenetv2_x1_0

model = cifar10_mobilenetv2_x1_0(pretrained=True)

OpenVINO は、モデル変換 Python API を使用した OpenVINO 中間表現形式への変換により、PyTorch モデルをサポートします。ov.convert_modelPyTorch モデル・インスタンスを受け入れ、それを OpenVINO のモデルの openvino.runtime.Model 表現に変換します。オプションで、モデルトレースのヘルパーとして機能する example_input と、モデルを静的形状に変換する input_shape を指定できます。変換されたモデルは、推論のためデバイスにロードする準備ができており、save_model 関数を使用して次回使用するためにディスクに保存できます。モデル変換 Python API の詳細については、このページを参照してください。

import openvino as ov

model.eval()

ov_model = ov.convert_model(model, input=[1,3,32,32])

ov.save_model(ov_model, MODEL_DIR / "mobilenet_v2.xml")

データセットの準備

torchvisionCIFAR10 データセットを使用します。 トレーニング設定から取得したモデルの前処理

import torch
from torchvision import transforms
from torchvision.datasets import CIFAR10

transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.247, 0.243, 0.261))])
dataset = CIFAR10(root=DATA_DIR, train=False, transform=transform, download=True)
val_loader = torch.utils.data.DataLoader(
    dataset,
    batch_size=1,
    shuffle=False,
    num_workers=0,
    pin_memory=True,
)
Downloading https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz to data/cifar-10-python.tar.gz

0%|          | 0/170498071 [00:00<?, ?it/s]
0%|          | 32768/170498071 [00:00<17:05, 166212.70it/s]
0%|          | 98304/170498071 [00:00<07:47, 364627.91it/s]
0%|          | 196608/170498071 [00:00<04:49, 587907.81it/s]
0%|          | 393216/170498071 [00:00<02:42, 1049548.10it/s]
0%|          | 786432/170498071 [00:00<01:26, 1970714.89it/s]
1%|          | 1179648/170498071 [00:00<01:06, 2549180.54it/s]
1%|          | 1572864/170498071 [00:00<00:57, 2941902.04it/s]
1%|          | 1966080/170498071 [00:00<00:52, 3207502.78it/s]
1%|▏         | 2359296/170498071 [00:01<00:49, 3373409.86it/s]
2%|▏         | 2752512/170498071 [00:01<00:48, 3484764.01it/s]
2%|▏         | 3145728/170498071 [00:01<00:46, 3564118.02it/s]
2%|▏         | 3538944/170498071 [00:01<00:45, 3634473.45it/s]
2%|▏         | 3932160/170498071 [00:01<00:45, 3681580.62it/s]
3%|▎         | 4325376/170498071 [00:01<00:44, 3700893.16it/s]
3%|▎         | 4718592/170498071 [00:01<00:44, 3727400.96it/s]
3%|▎         | 5111808/170498071 [00:01<00:44, 3729318.04it/s]
3%|▎         | 5505024/170498071 [00:01<00:44, 3730061.67it/s]
3%|▎         | 5898240/170498071 [00:01<00:43, 3750969.28it/s]
4%|▎         | 6291456/170498071 [00:02<00:43, 3749865.11it/s]
4%|▍         | 6684672/170498071 [00:02<00:43, 3763008.02it/s]
4%|▍         | 7077888/170498071 [00:02<00:43, 3760280.87it/s]
4%|▍         | 7471104/170498071 [00:02<00:43, 3772836.07it/s]
5%|▍         | 7864320/170498071 [00:02<00:43, 3763036.38it/s]
5%|▍         | 8257536/170498071 [00:02<00:43, 3756139.25it/s]
5%|▌         | 8650752/170498071 [00:02<00:42, 3772264.41it/s]
5%|▌         | 9043968/170498071 [00:02<00:42, 3761271.41it/s]
6%|▌         | 9437184/170498071 [00:02<00:42, 3758117.66it/s]
6%|▌         | 9830400/170498071 [00:03<00:42, 3771903.27it/s]
6%|▌         | 10223616/170498071 [00:03<00:42, 3765693.38it/s]
6%|▌         | 10616832/170498071 [00:03<00:42, 3760355.48it/s]
6%|▋         | 11010048/170498071 [00:03<00:42, 3771889.89it/s]
7%|▋         | 11403264/170498071 [00:03<00:42, 3765896.00it/s]
7%|▋         | 11796480/170498071 [00:03<00:42, 3770225.19it/s]
7%|▋         | 12189696/170498071 [00:03<00:42, 3761499.01it/s]
7%|▋         | 12582912/170498071 [00:03<00:41, 3772024.31it/s]
8%|▊         | 12976128/170498071 [00:03<00:43, 3646344.25it/s]
8%|▊         | 13369344/170498071 [00:03<00:42, 3689742.42it/s]
8%|▊         | 13762560/170498071 [00:04<00:42, 3722174.24it/s]
8%|▊         | 14155776/170498071 [00:04<00:41, 3729804.42it/s]
9%|▊         | 14548992/170498071 [00:04<00:41, 3748900.65it/s]
9%|▉         | 14942208/170498071 [00:04<00:41, 3747256.60it/s]
9%|▉         | 15335424/170498071 [00:04<00:41, 3760600.26it/s]
9%|▉         | 15728640/170498071 [00:04<00:41, 3756190.99it/s]
9%|▉         | 16121856/170498071 [00:04<00:40, 3769291.22it/s]
10%|▉         | 16515072/170498071 [00:04<00:40, 3765129.18it/s]
10%|▉         | 16908288/170498071 [00:04<00:40, 3775219.04it/s]
10%|█         | 17301504/170498071 [00:05<00:40, 3768045.55it/s]
10%|█         | 17694720/170498071 [00:05<00:40, 3779356.16it/s]
11%|█         | 18087936/170498071 [00:05<00:40, 3767156.95it/s]
11%|█         | 18481152/170498071 [00:05<00:40, 3774439.30it/s]
11%|█         | 18874368/170498071 [00:05<00:40, 3767749.65it/s]
11%|█▏        | 19267584/170498071 [00:05<00:40, 3778430.90it/s]
12%|█▏        | 19660800/170498071 [00:05<00:39, 3772794.54it/s]
12%|█▏        | 20054016/170498071 [00:05<00:39, 3764866.27it/s]
12%|█▏        | 20447232/170498071 [00:05<00:39, 3776940.26it/s]
12%|█▏        | 20840448/170498071 [00:05<00:39, 3766939.32it/s]
12%|█▏        | 21233664/170498071 [00:06<00:39, 3778488.77it/s]
13%|█▎        | 21626880/170498071 [00:06<00:39, 3767888.28it/s]
13%|█▎        | 22020096/170498071 [00:06<00:39, 3775536.50it/s]
13%|█▎        | 22413312/170498071 [00:06<00:39, 3784667.31it/s]
13%|█▎        | 22806528/170498071 [00:06<00:39, 3771695.19it/s]
14%|█▎        | 23199744/170498071 [00:06<00:38, 3781098.36it/s]
14%|█▍        | 23592960/170498071 [00:06<00:38, 3768526.04it/s]
14%|█▍        | 23986176/170498071 [00:06<00:38, 3763839.52it/s]
14%|█▍        | 24379392/170498071 [00:06<00:38, 3762730.51it/s]
15%|█▍        | 24772608/170498071 [00:06<00:38, 3759140.43it/s]
15%|█▍        | 25165824/170498071 [00:07<00:38, 3754317.43it/s]
15%|█▍        | 25559040/170498071 [00:07<00:38, 3755740.60it/s]
15%|█▌        | 25952256/170498071 [00:07<00:38, 3749437.85it/s]
15%|█▌        | 26345472/170498071 [00:07<00:38, 3750633.95it/s]
16%|█▌        | 26738688/170498071 [00:07<00:38, 3751863.38it/s]
16%|█▌        | 27131904/170498071 [00:07<00:38, 3749632.52it/s]
16%|█▌        | 27525120/170498071 [00:07<00:38, 3750481.16it/s]
16%|█▋        | 27918336/170498071 [00:07<00:37, 3767501.75it/s]
17%|█▋        | 28311552/170498071 [00:07<00:37, 3762282.12it/s]
17%|█▋        | 28704768/170498071 [00:08<00:37, 3757208.73it/s]
17%|█▋        | 29097984/170498071 [00:08<00:37, 3767048.10it/s]
17%|█▋        | 29491200/170498071 [00:08<00:37, 3775503.33it/s]
18%|█▊        | 29884416/170498071 [00:08<00:37, 3777539.29it/s]
18%|█▊        | 30277632/170498071 [00:08<00:37, 3771522.68it/s]
18%|█▊        | 30670848/170498071 [00:08<00:37, 3768097.10it/s]
18%|█▊        | 31064064/170498071 [00:08<00:37, 3760340.19it/s]
18%|█▊        | 31457280/170498071 [00:08<00:36, 3772414.30it/s]
19%|█▊        | 31850496/170498071 [00:08<00:36, 3763910.45it/s]
19%|█▉        | 32243712/170498071 [00:08<00:36, 3759185.71it/s]
19%|█▉        | 32636928/170498071 [00:09<00:36, 3752188.93it/s]
19%|█▉        | 33030144/170498071 [00:09<00:36, 3766797.06it/s]
20%|█▉        | 33423360/170498071 [00:09<00:36, 3761136.47it/s]
20%|█▉        | 33816576/170498071 [00:09<00:36, 3756244.61it/s]
20%|██        | 34209792/170498071 [00:09<00:36, 3768659.77it/s]
20%|██        | 34603008/170498071 [00:09<00:36, 3762173.64it/s]
21%|██        | 34996224/170498071 [00:09<00:35, 3774047.75it/s]
21%|██        | 35389440/170498071 [00:09<00:35, 3767572.06it/s]
21%|██        | 35782656/170498071 [00:09<00:35, 3779984.10it/s]
21%|██        | 36175872/170498071 [00:10<00:35, 3771377.51it/s]
21%|██▏       | 36569088/170498071 [00:10<00:35, 3761817.99it/s]
22%|██▏       | 36962304/170498071 [00:10<00:35, 3769026.33it/s]
22%|██▏       | 37355520/170498071 [00:10<00:35, 3763490.51it/s]
22%|██▏       | 37748736/170498071 [00:10<00:35, 3775898.32it/s]
22%|██▏       | 38141952/170498071 [00:10<00:35, 3765847.42it/s]
23%|██▎       | 38535168/170498071 [00:10<00:34, 3778934.96it/s]
23%|██▎       | 38928384/170498071 [00:10<00:34, 3764725.55it/s]
23%|██▎       | 39321600/170498071 [00:10<00:34, 3775183.84it/s]
23%|██▎       | 39714816/170498071 [00:10<00:34, 3784262.94it/s]
24%|██▎       | 40108032/170498071 [00:11<00:34, 3770568.22it/s]
24%|██▍       | 40501248/170498071 [00:11<00:34, 3764569.11it/s]
24%|██▍       | 40894464/170498071 [00:11<00:34, 3761003.64it/s]
24%|██▍       | 41287680/170498071 [00:11<00:34, 3756783.29it/s]
24%|██▍       | 41680896/170498071 [00:11<00:34, 3753770.60it/s]
25%|██▍       | 42074112/170498071 [00:11<00:34, 3769468.00it/s]
25%|██▍       | 42467328/170498071 [00:11<00:33, 3781392.65it/s]
25%|██▌       | 42860544/170498071 [00:11<00:33, 3774928.49it/s]
25%|██▌       | 43253760/170498071 [00:11<00:33, 3766898.03it/s]
26%|██▌       | 43646976/170498071 [00:11<00:33, 3777327.77it/s]
26%|██▌       | 44040192/170498071 [00:12<00:33, 3765844.02it/s]
26%|██▌       | 44433408/170498071 [00:12<00:33, 3775911.40it/s]
26%|██▋       | 44826624/170498071 [00:12<00:33, 3782290.53it/s]
27%|██▋       | 45219840/170498071 [00:12<00:33, 3772901.52it/s]
27%|██▋       | 45613056/170498071 [00:12<00:33, 3781793.44it/s]
27%|██▋       | 46006272/170498071 [00:12<00:33, 3714231.21it/s]
27%|██▋       | 46399488/170498071 [00:12<00:33, 3739005.08it/s]
27%|██▋       | 46792704/170498071 [00:12<00:33, 3739775.61it/s]
28%|██▊       | 47185920/170498071 [00:12<00:32, 3741206.05it/s]
28%|██▊       | 47579136/170498071 [00:13<00:32, 3760037.28it/s]
28%|██▊       | 47972352/170498071 [00:13<00:32, 3757286.61it/s]
28%|██▊       | 48365568/170498071 [00:13<00:32, 3769642.07it/s]
29%|██▊       | 48758784/170498071 [00:13<00:32, 3761617.83it/s]
29%|██▉       | 49152000/170498071 [00:13<00:32, 3751118.48it/s]
29%|██▉       | 49545216/170498071 [00:13<00:32, 3764275.43it/s]
29%|██▉       | 49938432/170498071 [00:13<00:32, 3760927.09it/s]
30%|██▉       | 50331648/170498071 [00:13<00:31, 3758265.61it/s]
30%|██▉       | 50724864/170498071 [00:13<00:31, 3756510.05it/s]
30%|██▉       | 51118080/170498071 [00:13<00:31, 3767986.62it/s]
30%|███       | 51511296/170498071 [00:14<00:31, 3762906.44it/s]
30%|███       | 51904512/170498071 [00:14<00:31, 3754549.63it/s]
31%|███       | 52297728/170498071 [00:14<00:31, 3767516.91it/s]
31%|███       | 52690944/170498071 [00:14<00:31, 3763114.22it/s]
31%|███       | 53084160/170498071 [00:14<00:31, 3775150.93it/s]
31%|███▏      | 53477376/170498071 [00:14<00:31, 3768186.59it/s]
32%|███▏      | 53870592/170498071 [00:14<00:31, 3761714.83it/s]
32%|███▏      | 54263808/170498071 [00:14<00:30, 3772328.82it/s]
32%|███▏      | 54657024/170498071 [00:14<00:30, 3761829.12it/s]
32%|███▏      | 55050240/170498071 [00:15<00:30, 3758328.18it/s]
33%|███▎      | 55443456/170498071 [00:15<00:30, 3753068.63it/s]
33%|███▎      | 55836672/170498071 [00:15<00:30, 3768905.29it/s]
33%|███▎      | 56229888/170498071 [00:15<00:30, 3778844.32it/s]
33%|███▎      | 56623104/170498071 [00:15<00:30, 3768435.39it/s]
33%|███▎      | 57016320/170498071 [00:15<00:30, 3762990.47it/s]
34%|███▎      | 57409536/170498071 [00:15<00:30, 3758085.96it/s]
34%|███▍      | 57802752/170498071 [00:15<00:29, 3756772.02it/s]
34%|███▍      | 58195968/170498071 [00:15<00:29, 3769499.15it/s]
34%|███▍      | 58589184/170498071 [00:15<00:29, 3764506.06it/s]
35%|███▍      | 58982400/170498071 [00:16<00:29, 3760897.84it/s]
35%|███▍      | 59375616/170498071 [00:16<00:29, 3756765.88it/s]
35%|███▌      | 59768832/170498071 [00:16<00:29, 3751757.73it/s]
35%|███▌      | 60162048/170498071 [00:16<00:29, 3766301.90it/s]
36%|███▌      | 60555264/170498071 [00:16<00:29, 3760145.25it/s]
36%|███▌      | 60948480/170498071 [00:16<00:29, 3714212.38it/s]
36%|███▌      | 61341696/170498071 [00:16<00:29, 3739248.58it/s]
36%|███▌      | 61734912/170498071 [00:16<00:29, 3738806.65it/s]
36%|███▋      | 62128128/170498071 [00:16<00:29, 3736675.43it/s]
37%|███▋      | 62521344/170498071 [00:17<00:28, 3753159.93it/s]
37%|███▋      | 62914560/170498071 [00:17<00:28, 3768827.64it/s]
37%|███▋      | 63307776/170498071 [00:17<00:28, 3763594.01it/s]
37%|███▋      | 63700992/170498071 [00:17<00:28, 3776920.71it/s]
38%|███▊      | 64094208/170498071 [00:17<00:28, 3769133.84it/s]
38%|███▊      | 64487424/170498071 [00:17<00:28, 3765620.13it/s]
38%|███▊      | 64880640/170498071 [00:17<00:28, 3758135.19it/s]
38%|███▊      | 65273856/170498071 [00:17<00:27, 3770537.32it/s]
39%|███▊      | 65667072/170498071 [00:17<00:27, 3775732.41it/s]
39%|███▊      | 66060288/170498071 [00:17<00:27, 3768003.19it/s]
39%|███▉      | 66453504/170498071 [00:18<00:27, 3779523.79it/s]
39%|███▉      | 66846720/170498071 [00:18<00:27, 3768753.36it/s]
39%|███▉      | 67239936/170498071 [00:18<00:27, 3759491.17it/s]
40%|███▉      | 67633152/170498071 [00:18<00:27, 3771748.85it/s]
40%|███▉      | 68026368/170498071 [00:18<00:27, 3767640.49it/s]
40%|████      | 68419584/170498071 [00:18<00:27, 3762587.54it/s]
40%|████      | 68812800/170498071 [00:18<00:26, 3777158.11it/s]
41%|████      | 69206016/170498071 [00:18<00:26, 3769433.72it/s]
41%|████      | 69599232/170498071 [00:18<00:26, 3781594.79it/s]
41%|████      | 69992448/170498071 [00:19<00:26, 3767066.03it/s]
41%|████▏     | 70385664/170498071 [00:19<00:26, 3763214.03it/s]
42%|████▏     | 70778880/170498071 [00:19<00:29, 3434526.08it/s]
42%|████▏     | 71172096/170498071 [00:19<00:28, 3520058.99it/s]
42%|████▏     | 71565312/170498071 [00:19<00:27, 3598620.04it/s]
42%|████▏     | 71958528/170498071 [00:19<00:27, 3642036.73it/s]
42%|████▏     | 72351744/170498071 [00:19<00:27, 3506407.73it/s]
43%|████▎     | 72744960/170498071 [00:19<00:27, 3576702.92it/s]
43%|████▎     | 73138176/170498071 [00:19<00:26, 3625529.10it/s]
43%|████▎     | 73531392/170498071 [00:19<00:26, 3662237.13it/s]
43%|████▎     | 73924608/170498071 [00:20<00:26, 3702844.17it/s]
44%|████▎     | 74317824/170498071 [00:20<00:25, 3716503.21it/s]
44%|████▍     | 74711040/170498071 [00:20<00:25, 3726051.42it/s]
44%|████▍     | 75104256/170498071 [00:20<00:25, 3731609.04it/s]
44%|████▍     | 75497472/170498071 [00:20<00:25, 3753031.19it/s]
45%|████▍     | 75890688/170498071 [00:20<00:25, 3767804.32it/s]
45%|████▍     | 76283904/170498071 [00:20<00:25, 3764425.58it/s]
45%|████▍     | 76677120/170498071 [00:20<00:24, 3764655.74it/s]
45%|████▌     | 77070336/170498071 [00:20<00:24, 3759945.21it/s]
45%|████▌     | 77463552/170498071 [00:21<00:24, 3758807.26it/s]
46%|████▌     | 77856768/170498071 [00:21<00:24, 3748640.09it/s]
46%|████▌     | 78249984/170498071 [00:21<00:24, 3766890.10it/s]
46%|████▌     | 78643200/170498071 [00:21<00:24, 3761306.91it/s]
46%|████▋     | 79036416/170498071 [00:21<00:24, 3760142.93it/s]
47%|████▋     | 79429632/170498071 [00:21<00:24, 3774041.47it/s]
47%|████▋     | 79822848/170498071 [00:21<00:24, 3769210.53it/s]
47%|████▋     | 80216064/170498071 [00:21<00:23, 3763848.40it/s]
47%|████▋     | 80609280/170498071 [00:21<00:23, 3756304.19it/s]
48%|████▊     | 81002496/170498071 [00:21<00:23, 3754976.54it/s]
48%|████▊     | 81395712/170498071 [00:22<00:23, 3752958.58it/s]
48%|████▊     | 81788928/170498071 [00:22<00:23, 3754252.67it/s]
48%|████▊     | 82182144/170498071 [00:22<00:23, 3753966.73it/s]
48%|████▊     | 82575360/170498071 [00:22<00:23, 3755066.53it/s]
49%|████▊     | 82968576/170498071 [00:22<00:23, 3752191.57it/s]
49%|████▉     | 83361792/170498071 [00:22<00:23, 3765676.55it/s]
49%|████▉     | 83755008/170498071 [00:22<00:22, 3777129.55it/s]
49%|████▉     | 84148224/170498071 [00:22<00:22, 3770375.49it/s]
50%|████▉     | 84541440/170498071 [00:22<00:22, 3763334.28it/s]
50%|████▉     | 84934656/170498071 [00:23<00:22, 3778076.87it/s]
50%|█████     | 85327872/170498071 [00:23<00:22, 3768337.58it/s]
50%|█████     | 85721088/170498071 [00:23<00:22, 3760973.47it/s]
51%|█████     | 86114304/170498071 [00:23<00:22, 3768936.65it/s]
51%|█████     | 86507520/170498071 [00:23<00:22, 3765521.04it/s]
51%|█████     | 86900736/170498071 [00:23<00:22, 3781085.49it/s]
51%|█████     | 87293952/170498071 [00:23<00:22, 3772124.21it/s]
51%|█████▏    | 87687168/170498071 [00:23<00:21, 3770274.83it/s]
52%|█████▏    | 88080384/170498071 [00:23<00:21, 3762316.32it/s]
52%|█████▏    | 88473600/170498071 [00:23<00:21, 3758455.29it/s]
52%|█████▏    | 88866816/170498071 [00:24<00:21, 3771236.23it/s]
52%|█████▏    | 89260032/170498071 [00:24<00:21, 3759615.27it/s]
53%|█████▎    | 89653248/170498071 [00:24<00:21, 3755436.36it/s]
53%|█████▎    | 90046464/170498071 [00:24<00:21, 3756036.73it/s]
53%|█████▎    | 90439680/170498071 [00:24<00:21, 3753971.55it/s]
53%|█████▎    | 90832896/170498071 [00:24<00:21, 3749829.49it/s]
54%|█████▎    | 91226112/170498071 [00:24<00:21, 3750905.71it/s]
54%|█████▎    | 91619328/170498071 [00:24<00:21, 3750858.25it/s]
54%|█████▍    | 92012544/170498071 [00:24<00:20, 3764478.61it/s]
54%|█████▍    | 92405760/170498071 [00:25<00:20, 3763960.85it/s]
54%|█████▍    | 92798976/170498071 [00:25<00:20, 3761463.76it/s]
55%|█████▍    | 93192192/170498071 [00:25<00:20, 3757538.63it/s]
55%|█████▍    | 93585408/170498071 [00:25<00:20, 3755975.95it/s]
55%|█████▌    | 93978624/170498071 [00:25<00:20, 3771495.25it/s]
55%|█████▌    | 94371840/170498071 [00:25<00:20, 3765226.23it/s]
56%|█████▌    | 94765056/170498071 [00:25<00:20, 3773957.83it/s]
56%|█████▌    | 95158272/170498071 [00:25<00:19, 3768632.79it/s]
56%|█████▌    | 95551488/170498071 [00:25<00:19, 3778052.69it/s]
56%|█████▋    | 95944704/170498071 [00:25<00:19, 3767096.80it/s]
57%|█████▋    | 96337920/170498071 [00:26<00:19, 3764377.05it/s]
57%|█████▋    | 96731136/170498071 [00:26<00:19, 3774184.37it/s]
57%|█████▋    | 97124352/170498071 [00:26<00:19, 3769760.04it/s]
57%|█████▋    | 97517568/170498071 [00:26<00:19, 3779783.57it/s]
57%|█████▋    | 97910784/170498071 [00:26<00:19, 3772285.81it/s]
58%|█████▊    | 98304000/170498071 [00:26<00:19, 3761935.61it/s]
58%|█████▊    | 98697216/170498071 [00:26<00:19, 3772621.44it/s]
58%|█████▊    | 99090432/170498071 [00:26<00:18, 3782197.43it/s]
58%|█████▊    | 99483648/170498071 [00:26<00:18, 3775287.65it/s]
59%|█████▊    | 99876864/170498071 [00:26<00:18, 3769302.49it/s]
59%|█████▉    | 100270080/170498071 [00:27<00:18, 3766604.86it/s]
59%|█████▉    | 100663296/170498071 [00:27<00:18, 3764020.30it/s]
59%|█████▉    | 101056512/170498071 [00:27<00:18, 3758876.86it/s]
60%|█████▉    | 101449728/170498071 [00:27<00:18, 3772144.06it/s]
60%|█████▉    | 101842944/170498071 [00:27<00:18, 3767449.16it/s]
60%|█████▉    | 102236160/170498071 [00:27<00:18, 3762042.02it/s]
60%|██████    | 102629376/170498071 [00:27<00:18, 3760734.34it/s]
60%|██████    | 103022592/170498071 [00:27<00:17, 3758986.56it/s]
61%|██████    | 103415808/170498071 [00:27<00:17, 3757751.24it/s]
61%|██████    | 103809024/170498071 [00:28<00:17, 3754123.99it/s]
61%|██████    | 104202240/170498071 [00:28<00:17, 3765993.66it/s]
61%|██████▏   | 104595456/170498071 [00:28<00:17, 3763108.69it/s]
62%|██████▏   | 104988672/170498071 [00:28<00:17, 3762183.16it/s]
62%|██████▏   | 105381888/170498071 [00:28<00:17, 3761381.14it/s]
62%|██████▏   | 105775104/170498071 [00:28<00:17, 3755504.47it/s]
62%|██████▏   | 106168320/170498071 [00:28<00:17, 3751194.37it/s]
63%|██████▎   | 106561536/170498071 [00:28<00:17, 3749042.02it/s]
63%|██████▎   | 106954752/170498071 [00:28<00:16, 3749824.60it/s]
63%|██████▎   | 107347968/170498071 [00:28<00:16, 3766206.98it/s]
63%|██████▎   | 107741184/170498071 [00:29<00:16, 3758937.53it/s]
63%|██████▎   | 108134400/170498071 [00:29<00:16, 3773359.69it/s]
64%|██████▎   | 108527616/170498071 [00:29<00:16, 3784456.27it/s]
64%|██████▍   | 108920832/170498071 [00:29<00:16, 3767335.66it/s]
64%|██████▍   | 109314048/170498071 [00:29<00:16, 3764732.20it/s]
64%|██████▍   | 109707264/170498071 [00:29<00:16, 3762049.29it/s]
65%|██████▍   | 110100480/170498071 [00:29<00:16, 3759818.65it/s]
65%|██████▍   | 110493696/170498071 [00:29<00:15, 3757842.60it/s]
65%|██████▌   | 110886912/170498071 [00:29<00:15, 3772059.24it/s]
65%|██████▌   | 111280128/170498071 [00:30<00:15, 3762349.40it/s]
65%|██████▌   | 111673344/170498071 [00:30<00:15, 3761649.31it/s]
66%|██████▌   | 112066560/170498071 [00:30<00:15, 3773569.59it/s]
66%|██████▌   | 112459776/170498071 [00:30<00:15, 3768188.72it/s]
66%|██████▌   | 112852992/170498071 [00:30<00:15, 3763856.50it/s]
66%|██████▋   | 113246208/170498071 [00:30<00:15, 3776955.24it/s]
67%|██████▋   | 113639424/170498071 [00:30<00:15, 3771366.07it/s]
67%|██████▋   | 114032640/170498071 [00:30<00:15, 3760610.88it/s]
67%|██████▋   | 114425856/170498071 [00:30<00:14, 3770951.43it/s]
67%|██████▋   | 114819072/170498071 [00:30<00:14, 3780278.74it/s]
68%|██████▊   | 115212288/170498071 [00:31<00:14, 3775268.41it/s]
68%|██████▊   | 115605504/170498071 [00:31<00:14, 3769343.33it/s]
68%|██████▊   | 115998720/170498071 [00:31<00:14, 3767588.51it/s]
68%|██████▊   | 116391936/170498071 [00:31<00:14, 3761135.48it/s]
68%|██████▊   | 116785152/170498071 [00:31<00:14, 3757717.65it/s]
69%|██████▊   | 117178368/170498071 [00:31<00:14, 3771344.91it/s]
69%|██████▉   | 117571584/170498071 [00:31<00:14, 3763180.64it/s]
69%|██████▉   | 117964800/170498071 [00:31<00:13, 3772459.49it/s]
69%|██████▉   | 118358016/170498071 [00:31<00:13, 3780387.80it/s]
70%|██████▉   | 118751232/170498071 [00:32<00:13, 3770510.27it/s]
70%|██████▉   | 119144448/170498071 [00:32<00:13, 3761031.26it/s]
70%|███████   | 119537664/170498071 [00:32<00:13, 3773955.27it/s]
70%|███████   | 119930880/170498071 [00:32<00:13, 3780453.60it/s]
71%|███████   | 120324096/170498071 [00:32<00:13, 3785503.14it/s]
71%|███████   | 120717312/170498071 [00:32<00:13, 3774809.42it/s]
71%|███████   | 121110528/170498071 [00:32<00:13, 3783752.16it/s]
71%|███████▏  | 121503744/170498071 [00:32<00:12, 3773196.80it/s]
71%|███████▏  | 121896960/170498071 [00:32<00:12, 3764355.18it/s]
72%|███████▏  | 122290176/170498071 [00:32<00:12, 3759457.66it/s]
72%|███████▏  | 122683392/170498071 [00:33<00:12, 3773581.52it/s]
72%|███████▏  | 123076608/170498071 [00:33<00:12, 3764600.00it/s]
72%|███████▏  | 123469824/170498071 [00:33<00:12, 3760261.19it/s]
73%|███████▎  | 123863040/170498071 [00:33<00:12, 3755010.11it/s]
73%|███████▎  | 124256256/170498071 [00:33<00:12, 3748225.29it/s]
73%|███████▎  | 124649472/170498071 [00:33<00:12, 3763922.67it/s]
73%|███████▎  | 125042688/170498071 [00:33<00:12, 3757115.85it/s]
74%|███████▎  | 125435904/170498071 [00:33<00:11, 3755192.82it/s]
74%|███████▍  | 125829120/170498071 [00:33<00:11, 3751982.78it/s]
74%|███████▍  | 126222336/170498071 [00:33<00:11, 3766878.74it/s]
74%|███████▍  | 126615552/170498071 [00:34<00:11, 3777080.62it/s]
74%|███████▍  | 127008768/170498071 [00:34<00:11, 3763215.52it/s]
75%|███████▍  | 127401984/170498071 [00:34<00:11, 3764102.30it/s]
75%|███████▍  | 127795200/170498071 [00:34<00:11, 3762754.66it/s]
75%|███████▌  | 128188416/170498071 [00:34<00:11, 3758599.60it/s]
75%|███████▌  | 128581632/170498071 [00:34<00:11, 3757914.61it/s]
76%|███████▌  | 128974848/170498071 [00:34<00:11, 3772837.45it/s]
76%|███████▌  | 129368064/170498071 [00:34<00:10, 3761313.15it/s]
76%|███████▌  | 129761280/170498071 [00:34<00:10, 3773824.92it/s]
76%|███████▋  | 130154496/170498071 [00:35<00:10, 3766665.46it/s]
77%|███████▋  | 130547712/170498071 [00:35<00:10, 3775986.24it/s]
77%|███████▋  | 130940928/170498071 [00:35<00:10, 3766881.43it/s]
77%|███████▋  | 131334144/170498071 [00:35<00:10, 3780097.76it/s]
77%|███████▋  | 131727360/170498071 [00:35<00:10, 3787877.11it/s]
77%|███████▋  | 132120576/170498071 [00:35<00:10, 3765610.19it/s]
78%|███████▊  | 132513792/170498071 [00:35<00:10, 3776675.43it/s]
78%|███████▊  | 132907008/170498071 [00:35<00:09, 3765580.99it/s]
78%|███████▊  | 133300224/170498071 [00:35<00:09, 3774671.16it/s]
78%|███████▊  | 133693440/170498071 [00:35<00:09, 3764817.56it/s]
79%|███████▊  | 134086656/170498071 [00:36<00:09, 3773367.37it/s]
79%|███████▉  | 134479872/170498071 [00:36<00:09, 3780360.35it/s]
79%|███████▉  | 134873088/170498071 [00:36<00:09, 3766982.66it/s]
79%|███████▉  | 135266304/170498071 [00:36<00:09, 3763673.62it/s]
80%|███████▉  | 135659520/170498071 [00:36<00:09, 3758732.49it/s]
80%|███████▉  | 136052736/170498071 [00:36<00:09, 3774349.71it/s]
80%|████████  | 136445952/170498071 [00:36<00:08, 3784022.58it/s]
80%|████████  | 136839168/170498071 [00:36<00:08, 3775320.72it/s]
80%|████████  | 137232384/170498071 [00:36<00:08, 3766097.85it/s]
81%|████████  | 137625600/170498071 [00:37<00:08, 3763114.54it/s]
81%|████████  | 138018816/170498071 [00:37<00:08, 3760658.56it/s]
81%|████████  | 138412032/170498071 [00:37<00:08, 3773977.54it/s]
81%|████████▏ | 138805248/170498071 [00:37<00:08, 3768452.80it/s]
82%|████████▏ | 139198464/170498071 [00:37<00:08, 3756843.86it/s]
82%|████████▏ | 139591680/170498071 [00:37<00:08, 3770079.72it/s]
82%|████████▏ | 139984896/170498071 [00:37<00:08, 3761868.81it/s]
82%|████████▏ | 140378112/170498071 [00:37<00:08, 3760358.52it/s]
83%|████████▎ | 140771328/170498071 [00:37<00:07, 3756730.56it/s]
83%|████████▎ | 141164544/170498071 [00:37<00:07, 3769958.48it/s]
83%|████████▎ | 141557760/170498071 [00:38<00:07, 3763301.05it/s]
83%|████████▎ | 141950976/170498071 [00:38<00:07, 3757601.50it/s]
83%|████████▎ | 142344192/170498071 [00:38<00:07, 3748301.37it/s]
84%|████████▎ | 142737408/170498071 [00:38<00:07, 3746893.64it/s]
84%|████████▍ | 143130624/170498071 [00:38<00:07, 3748391.41it/s]
84%|████████▍ | 143523840/170498071 [00:38<00:07, 3764792.60it/s]
84%|████████▍ | 143917056/170498071 [00:38<00:07, 3776628.90it/s]
85%|████████▍ | 144310272/170498071 [00:38<00:06, 3766660.58it/s]
85%|████████▍ | 144703488/170498071 [00:38<00:06, 3777983.47it/s]
85%|████████▌ | 145096704/170498071 [00:39<00:06, 3764556.77it/s]
85%|████████▌ | 145489920/170498071 [00:39<00:06, 3760238.71it/s]
86%|████████▌ | 145883136/170498071 [00:39<00:06, 3771864.00it/s]
86%|████████▌ | 146276352/170498071 [00:39<00:06, 3782640.25it/s]
86%|████████▌ | 146669568/170498071 [00:39<00:06, 3774494.78it/s]
86%|████████▋ | 147062784/170498071 [00:39<00:06, 3769793.26it/s]
86%|████████▋ | 147456000/170498071 [00:39<00:06, 3763335.21it/s]
87%|████████▋ | 147849216/170498071 [00:39<00:05, 3775602.18it/s]
87%|████████▋ | 148242432/170498071 [00:39<00:05, 3782945.18it/s]
87%|████████▋ | 148635648/170498071 [00:39<00:05, 3775031.31it/s]
87%|████████▋ | 149028864/170498071 [00:40<00:05, 3767217.50it/s]
88%|████████▊ | 149422080/170498071 [00:40<00:05, 3762696.51it/s]
88%|████████▊ | 149815296/170498071 [00:40<00:05, 3758672.05it/s]
88%|████████▊ | 150208512/170498071 [00:40<00:05, 3757179.41it/s]
88%|████████▊ | 150601728/170498071 [00:40<00:05, 3768055.08it/s]
89%|████████▊ | 150994944/170498071 [00:40<00:05, 3775000.39it/s]
89%|████████▉ | 151388160/170498071 [00:40<00:05, 3782368.72it/s]
89%|████████▉ | 151781376/170498071 [00:40<00:04, 3775736.42it/s]
89%|████████▉ | 152174592/170498071 [00:40<00:04, 3766263.55it/s]
89%|████████▉ | 152567808/170498071 [00:40<00:04, 3774060.16it/s]
90%|████████▉ | 152961024/170498071 [00:41<00:04, 3765686.48it/s]
90%|████████▉ | 153354240/170498071 [00:41<00:04, 3776775.86it/s]
90%|█████████ | 153747456/170498071 [00:41<00:04, 3770524.40it/s]
90%|█████████ | 154140672/170498071 [00:41<00:04, 3766421.29it/s]
91%|█████████ | 154533888/170498071 [00:41<00:04, 3761749.18it/s]
91%|█████████ | 154927104/170498071 [00:41<00:04, 3759462.27it/s]
91%|█████████ | 155320320/170498071 [00:41<00:04, 3754211.39it/s]
91%|█████████▏| 155713536/170498071 [00:41<00:03, 3769998.86it/s]
92%|█████████▏| 156106752/170498071 [00:41<00:03, 3766165.14it/s]
92%|█████████▏| 156499968/170498071 [00:42<00:03, 3760618.26it/s]
92%|█████████▏| 156893184/170498071 [00:42<00:03, 3773490.63it/s]
92%|█████████▏| 157286400/170498071 [00:42<00:03, 3748320.15it/s]
92%|█████████▏| 157679616/170498071 [00:42<00:03, 3751022.81it/s]
93%|█████████▎| 158072832/170498071 [00:42<00:03, 3748362.27it/s]
93%|█████████▎| 158466048/170498071 [00:42<00:03, 3761330.78it/s]
93%|█████████▎| 158859264/170498071 [00:42<00:03, 3758928.12it/s]
93%|█████████▎| 159252480/170498071 [00:42<00:02, 3755371.93it/s]
94%|█████████▎| 159645696/170498071 [00:42<00:02, 3770386.13it/s]
94%|█████████▍| 160038912/170498071 [00:42<00:02, 3760785.28it/s]
94%|█████████▍| 160432128/170498071 [00:43<00:02, 3754896.29it/s]
94%|█████████▍| 160825344/170498071 [00:43<00:02, 3768308.76it/s]
95%|█████████▍| 161218560/170498071 [00:43<00:02, 3777946.75it/s]
95%|█████████▍| 161611776/170498071 [00:43<00:02, 3769947.29it/s]
95%|█████████▌| 162004992/170498071 [00:43<00:02, 3765141.22it/s]
95%|█████████▌| 162398208/170498071 [00:43<00:02, 3776947.12it/s]
95%|█████████▌| 162791424/170498071 [00:43<00:02, 3769051.47it/s]
96%|█████████▌| 163184640/170498071 [00:43<00:01, 3761803.24it/s]
96%|█████████▌| 163577856/170498071 [00:43<00:01, 3772973.58it/s]
96%|█████████▌| 163971072/170498071 [00:44<00:01, 3764297.59it/s]
96%|█████████▋| 164364288/170498071 [00:44<00:01, 3761181.87it/s]
97%|█████████▋| 164757504/170498071 [00:44<00:01, 3759060.47it/s]
97%|█████████▋| 165150720/170498071 [00:44<00:01, 3756318.88it/s]
97%|█████████▋| 165543936/170498071 [00:44<00:01, 3751555.73it/s]
97%|█████████▋| 165937152/170498071 [00:44<00:01, 3751377.22it/s]
98%|█████████▊| 166330368/170498071 [00:44<00:01, 3768697.78it/s]
98%|█████████▊| 166723584/170498071 [00:44<00:01, 3762334.04it/s]
98%|█████████▊| 167116800/170498071 [00:44<00:00, 3774603.85it/s]
98%|█████████▊| 167510016/170498071 [00:44<00:00, 3782592.29it/s]
98%|█████████▊| 167903232/170498071 [00:45<00:00, 3774653.13it/s]
99%|█████████▊| 168296448/170498071 [00:45<00:00, 3766749.96it/s]
99%|█████████▉| 168689664/170498071 [00:45<00:00, 3762807.79it/s]
99%|█████████▉| 169082880/170498071 [00:45<00:00, 3759747.16it/s]
99%|█████████▉| 169476096/170498071 [00:45<00:00, 3757142.87it/s]
100%|█████████▉| 169869312/170498071 [00:45<00:00, 3755006.52it/s]
100%|█████████▉| 170262528/170498071 [00:45<00:00, 3770133.46it/s]
100%|██████████| 170498071/170498071 [00:45<00:00, 3727583.78it/s]

Extracting data/cifar-10-python.tar.gz to data

量子化を実行

NNCF は、精度の低下を最小限に抑えながら、OpenVINO でニューラル・ネットワーク推論を最適化する一連の高度なアルゴリズムを提供します。MobileNetV2 を最適化するため、ポストトレーニング・モード (微調整パイプラインなし) で 8 ビット量子化を使用します。最適化プロセスには次の手順が含まれます。

  1. 量子化用のデータセットを作成します。

  2. nncf.quantize を実行して、最適化されたモデルを取得します。

  3. openvino.save_model 関数を使用して、OpenVINO IR モデルをシリアル化します。

検証データセットの作成

NNCF は torch.utils.data.DataLoader インターフェイスと互換性があります。量子化を実行するには、量子化中にモデルに適合する入力データを準備する変換関数を使用して nncf.Dataset オブジェクトに渡す必要があります。この場合、ペア (入力テンソルとラベル) から入力テンソルを選択し、PyTorch テンソルを numpy に変換します。

import nncf

def transform_fn(data_item):
    image_tensor = data_item[0]
    return image_tensor.numpy()

quantization_dataset = nncf.Dataset(val_loader, transform_fn)
INFO:nncf:NNCF initialized successfully. Supported frameworks detected: torch, tensorflow, onnx, openvino

nncf.quantize を実行して最適化されたモデルを取得

nncf.quantize 関数は、基本的な量子化を実行するためモデルと準備された量子化データセットを受け取ります。必要に応じて、subset_sizepresetignored_scope などの追加パラメーターを指定して、該当する場合は量子化の結果を改善できます。サポートされているパラメーターの詳細については、このページを参照してください。

quant_ov_model = nncf.quantize(ov_model, quantization_dataset)
2024-02-09 22:59:25.557733: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable TF_ENABLE_ONEDNN_OPTS=0.
2024-02-09 22:59:25.614970: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
2024-02-09 22:59:26.140513: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT
Output()
Output()

                            

OpenVINO IR モデルをシリアル化

ov.convert_model と同様に、量子化モデルは ov.Model オブジェクトであり、デバイスにロードする準備ができており、ov.save_model を使用してディスク上でシリアル化できます。

ov.save_model(quant_ov_model, MODEL_DIR / "quantized_mobilenet_v2.xml")

元のモデルと量子化されたモデルの精度を比較

from tqdm.notebook import tqdm
import numpy as np

def test_accuracy(ov_model, data_loader):
    correct = 0
    total = 0
    for (batch_imgs, batch_labels) in tqdm(data_loader):
        result = ov_model(batch_imgs)[0]
        top_label = np.argmax(result)
        correct += top_label == batch_labels.numpy()
        total += 1
    return correct / total

推論デバイスの選択

OpenVINO を使用して推論を実行するためにドロップダウン・リストからデバイスを選択します。

import ipywidgets as widgets

core = ov.Core()
device = widgets.Dropdown(
    options=core.available_devices + ["AUTO"],
    value='AUTO',
    description='Device:',
    disabled=False,
)

device
Dropdown(description='Device:', index=1, options=('CPU', 'AUTO'), value='AUTO')
core = ov.Core()
compiled_model = core.compile_model(ov_model, device.value)
optimized_compiled_model = core.compile_model(quant_ov_model, device.value)

orig_accuracy = test_accuracy(compiled_model, val_loader)
optimized_accuracy = test_accuracy(optimized_compiled_model, val_loader)
0%|          | 0/10000 [00:00<?, ?it/s]
0%|          | 0/10000 [00:00<?, ?it/s]
print(f"Accuracy of the original model: {orig_accuracy[0] * 100 :.2f}%")
print(f"Accuracy of the optimized model: {optimized_accuracy[0] * 100 :.2f}%")
Accuracy of the original model: 93.61%
Accuracy of the optimized model: 93.54%

元のモデルと量子化モデルのパフォーマンスを比較

最後に、ベンチマーク・ツール (OpenVINO の推論パフォーマンス測定ツール) を使用して、FP32 モデルと INT8 モデルの推論パフォーマンスを測定します。

注: より正確なパフォーマンスを得るには、他のアプリケーションを閉じて、ターミナル/コマンドプロンプトで benchmark_app を実行することを推奨します。benchmark_app -m model.xml -d CPU を実行して、CPU で非同期推論のベンチマークを 1 分間実行します。GPU でベンチマークを行うには、CPU を GPU に変更します。benchmark_app --help を実行すると、すべてのコマンドライン・オプションの概要が表示されます。

# Inference FP16 model (OpenVINO IR)
!benchmark_app -m "model/mobilenet_v2.xml" -d $device.value -api async -t 15
[Step 1/11] Parsing and validating input arguments
[ INFO ] Parsing input parameters
[Step 2/11] Loading OpenVINO Runtime
[ INFO ] OpenVINO:
[ INFO ] Build ................................. 2023.3.0-13775-ceeafaf64f3-releases/2023/3
[ INFO ]
[ INFO ] Device info:
[ INFO ] AUTO
[ INFO ] Build ................................. 2023.3.0-13775-ceeafaf64f3-releases/2023/3
[ INFO ]
[ INFO ]
[Step 3/11] Setting device configuration
[ WARNING ] Performance hint was not explicitly specified in command line. Device(AUTO) performance hint will be set to PerformanceMode.THROUGHPUT.
[Step 4/11] Reading model files
[ INFO ] Loading model files
[ INFO ] Read model took 9.75 ms
[ INFO ] Original model I/O parameters:
[ INFO ] Model inputs:
[ INFO ]     x (node: x) : f32 / [...] / [1,3,32,32]
[ INFO ] Model outputs:
[ INFO ]     x.17 (node: aten::linear/Add) : f32 / [...] / [1,10]
[Step 5/11] Resizing model to match image sizes and given batch
[ INFO ] Model batch size: 1
[Step 6/11] Configuring input of the model
[ INFO ] Model inputs:
[ INFO ]     x (node: x) : u8 / [N,C,H,W] / [1,3,32,32]
[ INFO ] Model outputs:
[ INFO ]     x.17 (node: aten::linear/Add) : f32 / [...] / [1,10]
[Step 7/11] Loading the model to the device
[ INFO ] Compile model took 198.44 ms
[Step 8/11] Querying optimal runtime parameters
[ INFO ] Model:
[ INFO ]   NETWORK_NAME: Model2
[ INFO ]   EXECUTION_DEVICES: ['CPU']
[ INFO ]   PERFORMANCE_HINT: PerformanceMode.THROUGHPUT
[ INFO ]   OPTIMAL_NUMBER_OF_INFER_REQUESTS: 12
[ INFO ]   MULTI_DEVICE_PRIORITIES: CPU
[ INFO ]   CPU:
[ INFO ]     AFFINITY: Affinity.CORE
[ INFO ]     CPU_DENORMALS_OPTIMIZATION: False
[ INFO ]     CPU_SPARSE_WEIGHTS_DECOMPRESSION_RATE: 1.0
[ INFO ]     ENABLE_CPU_PINNING: True
[ INFO ]     ENABLE_HYPER_THREADING: True
[ INFO ]     EXECUTION_DEVICES: ['CPU']
[ INFO ]     EXECUTION_MODE_HINT: ExecutionMode.PERFORMANCE
[ INFO ]     INFERENCE_NUM_THREADS: 24
[ INFO ]     INFERENCE_PRECISION_HINT: <Type: 'float32'>
[ INFO ]     NETWORK_NAME: Model2
[ INFO ]     NUM_STREAMS: 12
[ INFO ]     OPTIMAL_NUMBER_OF_INFER_REQUESTS: 12
[ INFO ]     PERFORMANCE_HINT: THROUGHPUT
[ INFO ]     PERFORMANCE_HINT_NUM_REQUESTS: 0
[ INFO ]     PERF_COUNT: NO
[ INFO ]     SCHEDULING_CORE_TYPE: SchedulingCoreType.ANY_CORE
[ INFO ]   MODEL_PRIORITY: Priority.MEDIUM
[ INFO ]   LOADED_FROM_CACHE: False
[Step 9/11] Creating infer requests and preparing input tensors
[ WARNING ] No input files were given for input 'x'!. This input will be filled with random values!
[ INFO ] Fill input 'x' with random values
[Step 10/11] Measuring performance (Start inference asynchronously, 12 inference requests, limits: 15000 ms duration)
[ INFO ] Benchmarking in inference only mode (inputs filling are not included in measurement loop).
[ INFO ] First inference took 2.83 ms
[Step 11/11] Dumping statistics report
[ INFO ] Execution Devices:['CPU']
[ INFO ] Count:            88488 iterations
[ INFO ] Duration:         15003.02 ms
[ INFO ] Latency:
[ INFO ]    Median:        1.85 ms
[ INFO ]    Average:       1.85 ms
[ INFO ]    Min:           1.17 ms
[ INFO ]    Max:           8.69 ms
[ INFO ] Throughput:   5898.01 FPS
# Inference INT8 model (OpenVINO IR)
!benchmark_app -m "model/quantized_mobilenet_v2.xml" -d $device.value -api async -t 15
[Step 1/11] Parsing and validating input arguments
[ INFO ] Parsing input parameters
[Step 2/11] Loading OpenVINO Runtime
[ INFO ] OpenVINO:
[ INFO ] Build ................................. 2023.3.0-13775-ceeafaf64f3-releases/2023/3
[ INFO ]
[ INFO ] Device info:
[ INFO ] AUTO
[ INFO ] Build ................................. 2023.3.0-13775-ceeafaf64f3-releases/2023/3
[ INFO ]
[ INFO ]
[Step 3/11] Setting device configuration
[ WARNING ] Performance hint was not explicitly specified in command line. Device(AUTO) performance hint will be set to PerformanceMode.THROUGHPUT.
[Step 4/11] Reading model files
[ INFO ] Loading model files
[ INFO ] Read model took 18.77 ms
[ INFO ] Original model I/O parameters:
[ INFO ] Model inputs:
[ INFO ]     x (node: x) : f32 / [...] / [1,3,32,32]
[ INFO ] Model outputs:
[ INFO ]     x.17 (node: aten::linear/Add) : f32 / [...] / [1,10]
[Step 5/11] Resizing model to match image sizes and given batch
[ INFO ] Model batch size: 1
[Step 6/11] Configuring input of the model
[ INFO ] Model inputs:
[ INFO ]     x (node: x) : u8 / [N,C,H,W] / [1,3,32,32]
[ INFO ] Model outputs:
[ INFO ]     x.17 (node: aten::linear/Add) : f32 / [...] / [1,10]
[Step 7/11] Loading the model to the device
[ INFO ] Compile model took 330.74 ms
[Step 8/11] Querying optimal runtime parameters
[ INFO ] Model:
[ INFO ]   NETWORK_NAME: Model2
[ INFO ]   EXECUTION_DEVICES: ['CPU']
[ INFO ]   PERFORMANCE_HINT: PerformanceMode.THROUGHPUT
[ INFO ]   OPTIMAL_NUMBER_OF_INFER_REQUESTS: 12
[ INFO ]   MULTI_DEVICE_PRIORITIES: CPU
[ INFO ]   CPU:
[ INFO ]     AFFINITY: Affinity.CORE
[ INFO ]     CPU_DENORMALS_OPTIMIZATION: False
[ INFO ]     CPU_SPARSE_WEIGHTS_DECOMPRESSION_RATE: 1.0
[ INFO ]     ENABLE_CPU_PINNING: True
[ INFO ]     ENABLE_HYPER_THREADING: True
[ INFO ]     EXECUTION_DEVICES: ['CPU']
[ INFO ]     EXECUTION_MODE_HINT: ExecutionMode.PERFORMANCE
[ INFO ]     INFERENCE_NUM_THREADS: 24
[ INFO ]     INFERENCE_PRECISION_HINT: <Type: 'float32'>
[ INFO ]     NETWORK_NAME: Model2
[ INFO ]     NUM_STREAMS: 12
[ INFO ]     OPTIMAL_NUMBER_OF_INFER_REQUESTS: 12
[ INFO ]     PERFORMANCE_HINT: THROUGHPUT
[ INFO ]     PERFORMANCE_HINT_NUM_REQUESTS: 0
[ INFO ]     PERF_COUNT: NO
[ INFO ]     SCHEDULING_CORE_TYPE: SchedulingCoreType.ANY_CORE
[ INFO ]   MODEL_PRIORITY: Priority.MEDIUM
[ INFO ]   LOADED_FROM_CACHE: False
[Step 9/11] Creating infer requests and preparing input tensors
[ WARNING ] No input files were given for input 'x'!. This input will be filled with random values!
[ INFO ] Fill input 'x' with random values
[Step 10/11] Measuring performance (Start inference asynchronously, 12 inference requests, limits: 15000 ms duration)
[ INFO ] Benchmarking in inference only mode (inputs filling are not included in measurement loop).
[ INFO ] First inference took 2.08 ms
[Step 11/11] Dumping statistics report
[ INFO ] Execution Devices:['CPU']
[ INFO ] Count:            167472 iterations
[ INFO ] Duration:         15001.04 ms
[ INFO ] Latency:
[ INFO ]    Median:        1.00 ms
[ INFO ]    Average:       1.03 ms
[ INFO ]    Min:           0.68 ms
[ INFO ]    Max:           7.03 ms
[ INFO ] Throughput:   11164.03 FPS

4 枚の写真の結果を比較

# Define all possible labels from the CIFAR10 dataset
labels_names = ["airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck"]
all_pictures = []
all_labels = []

# Get all pictures and their labels.
for i, batch in enumerate(val_loader):
    all_pictures.append(batch[0].numpy())
    all_labels.append(batch[1].item())
import matplotlib.pyplot as plt

def plot_pictures(indexes: list, all_pictures=all_pictures, all_labels=all_labels):
    """Plot 4 pictures.
    :param indexes: a list of indexes of pictures to be displayed.
    :param all_batches: batches with pictures.
    """
    images, labels = [], []
    num_pics = len(indexes)
    assert num_pics == 4, f'No enough indexes for pictures to be displayed, got {num_pics}'
    for idx in indexes:
        assert idx < 10000, 'Cannot get such index, there are only 10000'
        pic = np.rollaxis(all_pictures[idx].squeeze(), 0, 3)
        images.append(pic)

        labels.append(labels_names[all_labels[idx]])

    f, axarr = plt.subplots(1, 4)
    axarr[0].imshow(images[0])
    axarr[0].set_title(labels[0])

    axarr[1].imshow(images[1])
    axarr[1].set_title(labels[1])

    axarr[2].imshow(images[2])
    axarr[2].set_title(labels[2])

    axarr[3].imshow(images[3])
    axarr[3].set_title(labels[3])
def infer_on_pictures(model, indexes: list, all_pictures=all_pictures):
    """ Inference model on a few pictures.
    :param net: model on which do inference
    :param indexes: list of indexes
    """
    output_key = model.output(0)
    predicted_labels = []
    for idx in indexes:
        assert idx < 10000, 'Cannot get such index, there are only 10000'
        result = model(all_pictures[idx])[output_key]
        result = labels_names[np.argmax(result[0])]
        predicted_labels.append(result)
    return predicted_labels
indexes_to_infer = [7, 12, 15, 20]  # To plot, specify 4 indexes.

plot_pictures(indexes_to_infer)

results_float = infer_on_pictures(compiled_model, indexes_to_infer)
results_quanized = infer_on_pictures(optimized_compiled_model, indexes_to_infer)

print(f"Labels for picture from float model : {results_float}.")
print(f"Labels for picture from quantized model : {results_quanized}.")
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Labels for picture from float model : ['frog', 'dog', 'ship', 'horse'].
Labels for picture from quantized model : ['frog', 'dog', 'ship', 'horse'].
../_images/113-image-classification-quantization-with-output_30_5.png