openvino.runtime.opset9.rnn_cell¶
- openvino.runtime.opset9.rnn_cell(X: Union[openvino._pyopenvino.Node, int, float, numpy.ndarray], initial_hidden_state: Union[openvino._pyopenvino.Node, int, float, numpy.ndarray], W: Union[openvino._pyopenvino.Node, int, float, numpy.ndarray], R: Union[openvino._pyopenvino.Node, int, float, numpy.ndarray], B: Union[openvino._pyopenvino.Node, int, float, numpy.ndarray], hidden_size: int, activations: List[str], activations_alpha: List[float], activations_beta: List[float], clip: float = 0.0, name: Optional[str] = None) openvino._pyopenvino.Node ¶
Perform RNNCell operation on tensor from input node.
It follows notation and equations defined as in ONNX standard: https://github.com/onnx/onnx/blob/master/docs/Operators.md#RNN
Note this class represents only single cell and not whole RNN layer.
- Parameters
X – The input tensor with shape: [batch_size, input_size].
initial_hidden_state – The hidden state tensor at current time step with shape: [batch_size, hidden_size].
W – The weight tensor with shape: [hidden_size, input_size].
R – The recurrence weight tensor with shape: [hidden_size, hidden_size].
B – The sum of biases (weight and recurrence) with shape: [hidden_size].
hidden_size – The number of hidden units for recurrent cell. Specifies hidden state size.
activations – The vector of activation functions used inside recurrent cell.
activation_alpha – The vector of alpha parameters for activation functions in order respective to activation list.
activation_beta – The vector of beta parameters for activation functions in order respective to activation list.
clip – The value defining clipping range [-clip, clip] on input of activation functions.
name – Optional output node name.
- Returns
The new node performing a RNNCell operation on tensor from input node.