Class ov::InferRequest¶
-
class InferRequest¶
This is a class of infer request that can be run in asynchronous or synchronous manners.
Public Functions
-
InferRequest() = default¶
Default constructor.
-
InferRequest(const InferRequest &other) = default¶
Default copy constructor.
- Parameters
other – Another InferRequest object.
-
InferRequest &operator=(const InferRequest &other) = default¶
Default copy assignment operator.
- Parameters
other – Another InferRequest object.
- Returns
Reference to the current object.
-
InferRequest(InferRequest &&other) = default¶
Default move constructor.
- Parameters
other – Another InferRequest object.
-
InferRequest &operator=(InferRequest &&other) = default¶
Default move assignment operator.
- Parameters
other – Another InferRequest object.
- Returns
Reference to the current object.
-
~InferRequest()¶
Destructor that preserves unloading order of implementation object and reference to the library.
Note
To preserve destruction order inside the default generated assignment operator,
_impl
is stored before_so
. Use the destructor to remove implementation object before referencing to the library explicitly.
-
void set_tensor(const std::string &tensor_name, const Tensor &tensor)¶
Sets an input/output tensor to infer on.
- Parameters
tensor_name – Name of the input or output tensor.
tensor – Reference to the tensor. The element_type and shape of the tensor must match the model’s input/output element_type and size.
-
void set_tensor(const ov::Output<const ov::Node> &port, const Tensor &tensor)¶
Sets an input/output tensor to infer.
- Parameters
port – Port of the input or output tensor. Use the following methods to get the ports:
tensor – Reference to a tensor. The element_type and shape of a tensor must match the model’s input/output element_type and size.
-
void set_tensor(const ov::Output<ov::Node> &port, const Tensor &tensor)¶
Sets an input/output tensor to infer.
- Parameters
port – Port of the input or output tensor. Use the following methods to get the ports:
tensor – Reference to a tensor. The element_type and shape of a tensor must match the model’s input/output element_type and size.
-
void set_tensors(const std::string &tensor_name, const std::vector<Tensor> &tensors)¶
Sets a batch of tensors for input data to infer by tensor name. Model input must have batch dimension, and the number of
tensors
must match the batch size. The current version supports setting tensors to model inputs only. Iftensor_name
is associated with output (or any other non-input node), an exception is thrown.- Parameters
tensor_name – Name of the input tensor.
tensors – Input tensors for batched infer request. The type of each tensor must match the model input element type and shape (except batch dimension). Total size of tensors must match the input size.
-
void set_tensors(const ov::Output<const ov::Node> &port, const std::vector<Tensor> &tensors)¶
Sets a batch of tensors for input data to infer by input port. Model input must have batch dimension, and the number of
tensors
must match the batch size. The current version supports setting tensors to model inputs only. Ifport
is associated with output (or any other non-input node), an exception is thrown.- Parameters
port – Port of the input tensor.
tensors – Input tensors for batched infer request. The type of each tensor must match the model input element type and shape (except batch dimension). Total size of tensors must match the input size.
-
void set_input_tensor(size_t idx, const Tensor &tensor)¶
Sets an input tensor to infer.
- Parameters
idx – Index of the input tensor. If
idx
is greater than the number of model inputs, an exception is thrown.tensor – Reference to the tensor. The element_type and shape of the tensor must match the model’s input/output element_type and size.
-
void set_input_tensor(const Tensor &tensor)¶
Sets an input tensor to infer models with single input.
Note
If model has several inputs, an exception is thrown.
- Parameters
tensor – Reference to the input tensor.
-
void set_input_tensors(const std::vector<Tensor> &tensors)¶
Sets a batch of tensors for single input data. Model input must have batch dimension, and the number of
tensors
must match the batch size.- Parameters
tensors – Input tensors for batched infer request. The type of each tensor must match the model input element type and shape (except batch dimension). Total size of tensors must match the input size.
-
void set_input_tensors(size_t idx, const std::vector<Tensor> &tensors)¶
Sets a batch of tensors for input data to infer by input name. Model input must have batch dimension, and number of
tensors
must match the batch size.- Parameters
idx – Name of the input tensor.
tensors – Input tensors for batched infer request. The type of each tensor must match the model input element type and shape (except batch dimension). Total size of tensors must match the input size.
-
void set_output_tensor(size_t idx, const Tensor &tensor)¶
Sets an output tensor to infer.
Note
Index of the input preserved accross ov::Model, ov::CompiledModel, and ov::InferRequest.
- Parameters
idx – Index of the output tensor.
tensor – Reference to the output tensor. The type of the tensor must match the model output element type and shape.
-
void set_output_tensor(const Tensor &tensor)¶
Sets an output tensor to infer models with single output.
Note
If model has several outputs, an exception is thrown.
- Parameters
tensor – Reference to the output tensor.
-
Tensor get_tensor(const std::string &tensor_name)¶
Gets an input/output tensor for inference by tensor name.
- Parameters
tensor_name – Name of a tensor to get.
- Returns
The tensor with name
tensor_name
. If the tensor is not found, an exception is thrown.
-
Tensor get_tensor(const ov::Output<const ov::Node> &port)¶
Gets an input/output tensor for inference.
Note
If the tensor with the specified
port
is not found, an exception is thrown.- Parameters
port – Port of the tensor to get.
- Returns
Tensor for the port
port
.
-
Tensor get_tensor(const ov::Output<ov::Node> &port)¶
Gets an input/output tensor for inference.
Note
If the tensor with the specified
port
is not found, an exception is thrown.- Parameters
port – Port of the tensor to get.
- Returns
Tensor for the port
port
.
-
Tensor get_input_tensor(size_t idx)¶
Gets an input tensor for inference.
- Parameters
idx – Index of the tensor to get.
- Returns
Tensor with the input index
idx
. If the tensor with the specifiedidx
is not found, an exception is thrown.
-
Tensor get_input_tensor()¶
Gets an input tensor for inference.
- Returns
The input tensor for the model. If model has several inputs, an exception is thrown.
-
Tensor get_output_tensor(size_t idx)¶
Gets an output tensor for inference.
- Parameters
idx – Index of the tensor to get.
- Returns
Tensor with the output index
idx
. If the tensor with the specifiedidx
is not found, an exception is thrown.
-
Tensor get_output_tensor()¶
Gets an output tensor for inference.
- Returns
Output tensor for the model. If model has several outputs, an exception is thrown.
-
void infer()¶
Infers specified input(s) in synchronous mode.
Note
It blocks all methods of InferRequest while request is ongoing (running or waiting in a queue). Calling any method leads to throwning the ov::Busy exception.
-
void cancel()¶
Cancels inference request.
-
std::vector<ProfilingInfo> get_profiling_info() const¶
Queries performance measures per layer to identify the most time consuming operation.
Note
Not all plugins provide meaningful data.
- Returns
Vector of profiling information for operations in a model.
-
void start_async()¶
Starts inference of specified input(s) in asynchronous mode.
Note
It returns immediately. Inference starts also immediately. Calling any method while the request in a running state leads to throwning the ov::Busy exception.
-
void wait()¶
Waits for the result to become available. Blocks until the result becomes available.
-
bool wait_for(const std::chrono::milliseconds timeout)¶
Waits for the result to become available. Blocks until the specified timeout has elapsed or the result becomes available, whichever comes first.
- Parameters
timeout – Maximum duration, in milliseconds, to block for.
- Returns
True if inference request is ready and false, otherwise.
-
void set_callback(std::function<void(std::exception_ptr)> callback)¶
Sets a callback std::function that is called on success or failure of an asynchronous request.
Warning
Do not capture strong references to OpenVINO runtime objects into callback. Following objects should not be captured like:
ov::ExecutableNetwork
ov::Core As specified objects implement shared reference concept do not capture this objects by value. It can lead to memory leaks or undefined behaviour! Try to use weak references or pointers.
- Parameters
callback – callback object which will be called on when inference finish.
-
std::vector<VariableState> query_state()¶
Gets state control interface for the given infer request.
State control essential for recurrent models.
- Returns
Vector of Variable State objects.
-
void reset_state()¶
Resets all internal variable states for relevant infer request to a value specified as default for the corresponding
ReadValue
node.
-
CompiledModel get_compiled_model()¶
Returns a compiled model that creates this inference request.
- Returns
Compiled model object.
-
bool operator!() const noexcept¶
Checks if the current InferRequest object is not initialized.
- Returns
True if the current InferRequest object is not initialized; false, otherwise.
-
explicit operator bool() const noexcept¶
Checks if the current InferRequest object is initialized.
- Returns
True if the current InferRequest object is initialized; false, otherwise.
-
bool operator!=(const InferRequest &other) const noexcept¶
Compares whether this request wraps the same impl underneath.
- Parameters
other – Another inference request.
- Returns
True if the current InferRequest object does not wrap the same impl as the operator’s arg.
-
bool operator==(const InferRequest &other) const noexcept¶
Compares whether this request wraps the same impl underneath.
- Parameters
other – Another inference request.
- Returns
True if the current InferRequest object wraps the same impl as the operator’s arg.
-
InferRequest() = default¶