TensorFlow 分類モデルを使用したトレーニング後の量子化¶
この Jupyter ノートブックは、ローカルへのインストール後にのみ起動できます。
この例では、301-tensorflow-training-openvino ノートブックで作成された OpenVINO モデルを量子化して推論速度を向上させる方法を示します。量子化は、NNCF を使用したトレーニング後の量子化によって実行されます。カスタム・データローダーとメトリックが定義され、元の IR モデルと量子化されたモデルの精度とパフォーマンスが計算されます。
目次¶
準備¶
ノートブックでは、トレーニング・ノートブックが実行され、中間表現 (IR) モデルが作成されている必要があります。IR モデルが存在しない場合、次のセルを実行するとトレーニング・ノートブックが実行されます。これにはしばらく時間がかかります。
%pip install -q tensorflow Pillow matplotlib numpy tqdm nncf
DEPRECATION: pytorch-lightning 1.6.5 has a non-standard dependency specifier torch>=1.8.*. pip 24.1 will enforce this behaviour change. A possible replacement is to upgrade to a newer version of pytorch-lightning or contact the author to suggest that they release a version with a conforming dependency specifiers. Discussion can be found at https://github.com/pypa/pip/issues/12063
Note: you may need to restart the kernel to use updated packages.
from pathlib import Path
import tensorflow as tf
model_xml = Path("model/flower/flower_ir.xml")
dataset_url = (
"https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz"
)
data_dir = Path(tf.keras.utils.get_file("flower_photos", origin=dataset_url, untar=True))
if not model_xml.exists():
print("Executing training notebook. This will take a while...")
%run 301-tensorflow-training-openvino.ipynb
2024-02-10 01:09:00.730910: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable TF_ENABLE_ONEDNN_OPTS=0. 2024-02-10 01:09:00.766002: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
2024-02-10 01:09:01.406366: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT
Executing training notebook. This will take a while...
DEPRECATION: pytorch-lightning 1.6.5 has a non-standard dependency specifier torch>=1.8.*. pip 24.1 will enforce this behaviour change. A possible replacement is to upgrade to a newer version of pytorch-lightning or contact the author to suggest that they release a version with a conforming dependency specifiers. Discussion can be found at https://github.com/pypa/pip/issues/12063
Note: you may need to restart the kernel to use updated packages.
3670
Found 3670 files belonging to 5 classes.
Using 2936 files for training.
2024-02-10 01:09:08.525687: E tensorflow/compiler/xla/stream_executor/cuda/cuda_driver.cc:266] failed call to cuInit: CUDA_ERROR_COMPAT_NOT_SUPPORTED_ON_DEVICE: forward compatibility was attempted on non supported HW
2024-02-10 01:09:08.525725: I tensorflow/compiler/xla/stream_executor/cuda/cuda_diagnostics.cc:168] retrieving CUDA diagnostic information for host: iotg-dev-workstation-07
2024-02-10 01:09:08.525729: I tensorflow/compiler/xla/stream_executor/cuda/cuda_diagnostics.cc:175] hostname: iotg-dev-workstation-07
2024-02-10 01:09:08.525856: I tensorflow/compiler/xla/stream_executor/cuda/cuda_diagnostics.cc:199] libcuda reported version is: 470.223.2
2024-02-10 01:09:08.525872: I tensorflow/compiler/xla/stream_executor/cuda/cuda_diagnostics.cc:203] kernel reported version is: 470.182.3
2024-02-10 01:09:08.525876: E tensorflow/compiler/xla/stream_executor/cuda/cuda_diagnostics.cc:312] kernel version 470.182.3 does not match DSO version 470.223.2 -- cannot find working devices in this configuration
Found 3670 files belonging to 5 classes.
Using 734 files for validation.
['daisy', 'dandelion', 'roses', 'sunflowers', 'tulips']
2024-02-10 01:09:08.855253: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_0' with dtype string and shape [2936]
[[{{node Placeholder/_0}}]]
2024-02-10 01:09:08.855534: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_4' with dtype int32 and shape [2936]
[[{{node Placeholder/_4}}]]
2024-02-10 01:09:09.711519: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_4' with dtype int32 and shape [2936]
[[{{node Placeholder/_4}}]]
2024-02-10 01:09:09.711766: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_0' with dtype string and shape [2936]
[[{{node Placeholder/_0}}]]
(32, 180, 180, 3)
(32,)
2024-02-10 01:09:10.063734: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_4' with dtype int32 and shape [2936]
[[{{node Placeholder/_4}}]]
2024-02-10 01:09:10.064340: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_4' with dtype int32 and shape [2936]
[[{{node Placeholder/_4}}]]
0.0 0.9970461
2024-02-10 01:09:10.875056: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_0' with dtype string and shape [2936]
[[{{node Placeholder/_0}}]]
2024-02-10 01:09:10.875365: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_0' with dtype string and shape [2936]
[[{{node Placeholder/_0}}]]
Model: "sequential_2"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
sequential_1 (Sequential) (None, 180, 180, 3) 0
rescaling_2 (Rescaling) (None, 180, 180, 3) 0
conv2d_3 (Conv2D) (None, 180, 180, 16) 448
max_pooling2d_3 (MaxPooling (None, 90, 90, 16) 0
2D)
conv2d_4 (Conv2D) (None, 90, 90, 32) 4640
max_pooling2d_4 (MaxPooling (None, 45, 45, 32) 0
2D)
conv2d_5 (Conv2D) (None, 45, 45, 64) 18496
max_pooling2d_5 (MaxPooling (None, 22, 22, 64) 0
2D)
dropout (Dropout) (None, 22, 22, 64) 0
flatten_1 (Flatten) (None, 30976) 0
dense_2 (Dense) (None, 128) 3965056
outputs (Dense) (None, 5) 645
=================================================================
Total params: 3,989,285
Trainable params: 3,989,285
Non-trainable params: 0
_________________________________________________________________
Epoch 1/15
2024-02-10 01:09:11.882327: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_0' with dtype string and shape [2936]
[[{{node Placeholder/_0}}]]
2024-02-10 01:09:11.882802: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_4' with dtype int32 and shape [2936]
[[{{node Placeholder/_4}}]]
1/92 [..............................] - ETA: 1:32 - loss: 1.6315 - accuracy: 0.1562
2/92 [..............................] - ETA: 6s - loss: 1.7632 - accuracy: 0.2812
3/92 [..............................] - ETA: 5s - loss: 1.7516 - accuracy: 0.2708
4/92 [>.............................] - ETA: 5s - loss: 1.7249 - accuracy: 0.2578
5/92 [>.............................] - ETA: 5s - loss: 1.6968 - accuracy: 0.2750
6/92 [>.............................] - ETA: 5s - loss: 1.6729 - accuracy: 0.2917
7/92 [=>............................] - ETA: 5s - loss: 1.6459 - accuracy: 0.3080
8/92 [=>............................] - ETA: 5s - loss: 1.6410 - accuracy: 0.3008
9/92 [=>............................] - ETA: 4s - loss: 1.6246 - accuracy: 0.3125
10/92 [==>………………………] - ETA: 4s - loss: 1.6151 - accuracy: 0.3000
11/92 [==>………………………] - ETA: 4s - loss: 1.6065 - accuracy: 0.3011
12/92 [==>………………………] - ETA: 4s - loss: 1.5947 - accuracy: 0.3047
13/92 [===>……………………..] - ETA: 4s - loss: 1.5839 - accuracy: 0.3077
14/92 [===>……………………..] - ETA: 4s - loss: 1.5719 - accuracy: 0.3125
15/92 [===>……………………..] - ETA: 4s - loss: 1.5604 - accuracy: 0.3187
16/92 [====>…………………….] - ETA: 4s - loss: 1.5477 - accuracy: 0.3203
17/92 [====>…………………….] - ETA: 4s - loss: 1.5317 - accuracy: 0.3272
18/92 [====>…………………….] - ETA: 4s - loss: 1.5153 - accuracy: 0.3368
19/92 [=====>……………………] - ETA: 4s - loss: 1.5118 - accuracy: 0.3355
20/92 [=====>……………………] - ETA: 4s - loss: 1.4901 - accuracy: 0.3484
21/92 [=====>……………………] - ETA: 4s - loss: 1.4818 - accuracy: 0.3569
22/92 [======>…………………..] - ETA: 4s - loss: 1.4839 - accuracy: 0.3563
23/92 [======>…………………..] - ETA: 4s - loss: 1.4731 - accuracy: 0.3599
24/92 [======>…………………..] - ETA: 3s - loss: 1.4556 - accuracy: 0.3724
25/92 [=======>………………….] - ETA: 3s - loss: 1.4413 - accuracy: 0.3788
26/92 [=======>………………….] - ETA: 3s - loss: 1.4353 - accuracy: 0.3774
27/92 [=======>………………….] - ETA: 3s - loss: 1.4367 - accuracy: 0.3762
28/92 [========>…………………] - ETA: 3s - loss: 1.4293 - accuracy: 0.3750
29/92 [========>…………………] - ETA: 3s - loss: 1.4196 - accuracy: 0.3793
30/92 [========>…………………] - ETA: 3s - loss: 1.4177 - accuracy: 0.3813
31/92 [=========>………………..] - ETA: 3s - loss: 1.4057 - accuracy: 0.3872
32/92 [=========>………………..] - ETA: 3s - loss: 1.4028 - accuracy: 0.3868
33/92 [=========>………………..] - ETA: 3s - loss: 1.3896 - accuracy: 0.3950
34/92 [==========>……………….] - ETA: 3s - loss: 1.3879 - accuracy: 0.3963
35/92 [==========>……………….] - ETA: 3s - loss: 1.3886 - accuracy: 0.3966
36/92 [==========>……………….] - ETA: 3s - loss: 1.3839 - accuracy: 0.3969
37/92 [===========>………………] - ETA: 3s - loss: 1.3853 - accuracy: 0.4022
38/92 [===========>………………] - ETA: 3s - loss: 1.3812 - accuracy: 0.4023
39/92 [===========>………………] - ETA: 3s - loss: 1.3746 - accuracy: 0.4065
40/92 [============>……………..] - ETA: 3s - loss: 1.3733 - accuracy: 0.4049
41/92 [============>……………..] - ETA: 2s - loss: 1.3684 - accuracy: 0.4064
42/92 [============>……………..] - ETA: 2s - loss: 1.3665 - accuracy: 0.4064
43/92 [=============>…………….] - ETA: 2s - loss: 1.3624 - accuracy: 0.4108
44/92 [=============>…………….] - ETA: 2s - loss: 1.3590 - accuracy: 0.4121
45/92 [=============>…………….] - ETA: 2s - loss: 1.3533 - accuracy: 0.4148
46/92 [==============>……………] - ETA: 2s - loss: 1.3472 - accuracy: 0.4167
47/92 [==============>……………] - ETA: 2s - loss: 1.3448 - accuracy: 0.4164
48/92 [==============>……………] - ETA: 2s - loss: 1.3409 - accuracy: 0.4162
49/92 [==============>……………] - ETA: 2s - loss: 1.3383 - accuracy: 0.4186
50/92 [===============>…………..] - ETA: 2s - loss: 1.3381 - accuracy: 0.4190
51/92 [===============>…………..] - ETA: 2s - loss: 1.3341 - accuracy: 0.4212
52/92 [===============>…………..] - ETA: 2s - loss: 1.3292 - accuracy: 0.4245
53/92 [================>………….] - ETA: 2s - loss: 1.3286 - accuracy: 0.4277
54/92 [================>………….] - ETA: 2s - loss: 1.3246 - accuracy: 0.4302
55/92 [================>………….] - ETA: 2s - loss: 1.3228 - accuracy: 0.4309
56/92 [=================>…………] - ETA: 2s - loss: 1.3231 - accuracy: 0.4355
57/92 [=================>…………] - ETA: 2s - loss: 1.3221 - accuracy: 0.4350
58/92 [=================>…………] - ETA: 1s - loss: 1.3200 - accuracy: 0.4378
59/92 [==================>………..] - ETA: 1s - loss: 1.3177 - accuracy: 0.4394
60/92 [==================>………..] - ETA: 1s - loss: 1.3148 - accuracy: 0.4409
61/92 [==================>………..] - ETA: 1s - loss: 1.3140 - accuracy: 0.4408
62/92 [===================>……….] - ETA: 1s - loss: 1.3080 - accuracy: 0.4443
63/92 [===================>……….] - ETA: 1s - loss: 1.3096 - accuracy: 0.4447
64/92 [===================>……….] - ETA: 1s - loss: 1.3068 - accuracy: 0.4451
65/92 [====================>………] - ETA: 1s - loss: 1.3014 - accuracy: 0.4469
66/92 [====================>………] - ETA: 1s - loss: 1.3013 - accuracy: 0.4468
67/92 [====================>………] - ETA: 1s - loss: 1.2977 - accuracy: 0.4480
68/92 [=====================>……..] - ETA: 1s - loss: 1.2948 - accuracy: 0.4493
69/92 [=====================>……..] - ETA: 1s - loss: 1.2914 - accuracy: 0.4500
70/92 [=====================>……..] - ETA: 1s - loss: 1.2929 - accuracy: 0.4476
71/92 [======================>…….] - ETA: 1s - loss: 1.2929 - accuracy: 0.4479
72/92 [======================>…….] - ETA: 1s - loss: 1.2902 - accuracy: 0.4495
73/92 [======================>…….] - ETA: 1s - loss: 1.2864 - accuracy: 0.4506
74/92 [=======================>……] - ETA: 1s - loss: 1.2854 - accuracy: 0.4504
75/92 [=======================>……] - ETA: 0s - loss: 1.2853 - accuracy: 0.4494
76/92 [=======================>……] - ETA: 0s - loss: 1.2809 - accuracy: 0.4513
77/92 [========================>…..] - ETA: 0s - loss: 1.2779 - accuracy: 0.4532
78/92 [========================>…..] - ETA: 0s - loss: 1.2774 - accuracy: 0.4538
79/92 [========================>…..] - ETA: 0s - loss: 1.2739 - accuracy: 0.4540
80/92 [=========================>….] - ETA: 0s - loss: 1.2722 - accuracy: 0.4542
81/92 [=========================>….] - ETA: 0s - loss: 1.2669 - accuracy: 0.4582
82/92 [=========================>….] - ETA: 0s - loss: 1.2654 - accuracy: 0.4599
83/92 [==========================>…] - ETA: 0s - loss: 1.2625 - accuracy: 0.4622
84/92 [==========================>…] - ETA: 0s - loss: 1.2580 - accuracy: 0.4642
85/92 [==========================>…] - ETA: 0s - loss: 1.2573 - accuracy: 0.4653
86/92 [===========================>..] - ETA: 0s - loss: 1.2566 - accuracy: 0.4665
87/92 [===========================>..] - ETA: 0s - loss: 1.2564 - accuracy: 0.4665
88/92 [===========================>..] - ETA: 0s - loss: 1.2530 - accuracy: 0.4679
89/92 [============================>.] - ETA: 0s - loss: 1.2492 - accuracy: 0.4690
90/92 [============================>.] - ETA: 0s - loss: 1.2445 - accuracy: 0.4714
91/92 [============================>.] - ETA: 0s - loss: 1.2402 - accuracy: 0.4735
92/92 [==============================] - ETA: 0s - loss: 1.2400 - accuracy: 0.4741
2024-02-10 01:09:18.229567: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_0' with dtype string and shape [734]
[[{{node Placeholder/_0}}]]
2024-02-10 01:09:18.229847: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_4' with dtype int32 and shape [734]
[[{{node Placeholder/_4}}]]
92/92 [==============================] - 7s 66ms/step - loss: 1.2400 - accuracy: 0.4741 - val_loss: 1.3762 - val_accuracy: 0.5014
Epoch 2/15
1/92 [..............................] - ETA: 7s - loss: 1.2018 - accuracy: 0.5625
2/92 [..............................] - ETA: 5s - loss: 1.0597 - accuracy: 0.5469
3/92 [..............................] - ETA: 5s - loss: 1.0781 - accuracy: 0.5521
4/92 [>.............................] - ETA: 5s - loss: 0.9952 - accuracy: 0.5938
5/92 [>.............................] - ETA: 5s - loss: 0.9872 - accuracy: 0.6187
6/92 [>.............................] - ETA: 5s - loss: 0.9615 - accuracy: 0.6094
7/92 [=>............................] - ETA: 4s - loss: 0.9715 - accuracy: 0.6205
8/92 [=>............................] - ETA: 4s - loss: 0.9608 - accuracy: 0.6211
9/92 [=>............................] - ETA: 4s - loss: 0.9538 - accuracy: 0.6250
10/92 [==>………………………] - ETA: 4s - loss: 0.9487 - accuracy: 0.6250
11/92 [==>………………………] - ETA: 4s - loss: 0.9616 - accuracy: 0.6307
12/92 [==>………………………] - ETA: 4s - loss: 0.9475 - accuracy: 0.6302
13/92 [===>……………………..] - ETA: 4s - loss: 0.9476 - accuracy: 0.6346
14/92 [===>……………………..] - ETA: 4s - loss: 0.9426 - accuracy: 0.6295
15/92 [===>……………………..] - ETA: 4s - loss: 0.9547 - accuracy: 0.6250
16/92 [====>…………………….] - ETA: 4s - loss: 0.9611 - accuracy: 0.6211
17/92 [====>…………………….] - ETA: 4s - loss: 0.9566 - accuracy: 0.6176
18/92 [====>…………………….] - ETA: 4s - loss: 0.9654 - accuracy: 0.6111
19/92 [=====>……………………] - ETA: 4s - loss: 0.9686 - accuracy: 0.6118
20/92 [=====>……………………] - ETA: 4s - loss: 0.9718 - accuracy: 0.6078
21/92 [=====>……………………] - ETA: 4s - loss: 0.9820 - accuracy: 0.6012
22/92 [======>…………………..] - ETA: 4s - loss: 0.9866 - accuracy: 0.5994
23/92 [======>…………………..] - ETA: 4s - loss: 0.9839 - accuracy: 0.6005
24/92 [======>…………………..] - ETA: 3s - loss: 0.9903 - accuracy: 0.5964
25/92 [=======>………………….] - ETA: 3s - loss: 0.9938 - accuracy: 0.5950
26/92 [=======>………………….] - ETA: 3s - loss: 1.0051 - accuracy: 0.5901
27/92 [=======>………………….] - ETA: 3s - loss: 0.9990 - accuracy: 0.5938
28/92 [========>…………………] - ETA: 3s - loss: 0.9965 - accuracy: 0.5949
29/92 [========>…………………] - ETA: 3s - loss: 0.9986 - accuracy: 0.5948
30/92 [========>…………………] - ETA: 3s - loss: 0.9992 - accuracy: 0.5917
31/92 [=========>………………..] - ETA: 3s - loss: 0.9976 - accuracy: 0.5927
33/92 [=========>………………..] - ETA: 3s - loss: 0.9922 - accuracy: 0.5964
34/92 [==========>……………….] - ETA: 3s - loss: 0.9964 - accuracy: 0.5954
35/92 [==========>……………….] - ETA: 3s - loss: 1.0031 - accuracy: 0.5935
36/92 [==========>……………….] - ETA: 3s - loss: 1.0041 - accuracy: 0.5909
37/92 [===========>………………] - ETA: 3s - loss: 1.0075 - accuracy: 0.5884
38/92 [===========>………………] - ETA: 3s - loss: 1.0049 - accuracy: 0.5886
39/92 [===========>………………] - ETA: 3s - loss: 1.0093 - accuracy: 0.5879
40/92 [============>……………..] - ETA: 3s - loss: 1.0040 - accuracy: 0.5912
41/92 [============>……………..] - ETA: 2s - loss: 1.0038 - accuracy: 0.5920
42/92 [============>……………..] - ETA: 2s - loss: 1.0080 - accuracy: 0.5898
43/92 [=============>…………….] - ETA: 2s - loss: 1.0082 - accuracy: 0.5914
44/92 [=============>…………….] - ETA: 2s - loss: 1.0021 - accuracy: 0.5936
45/92 [=============>…………….] - ETA: 2s - loss: 1.0045 - accuracy: 0.5936
46/92 [==============>……………] - ETA: 2s - loss: 1.0064 - accuracy: 0.5922
47/92 [==============>……………] - ETA: 2s - loss: 1.0063 - accuracy: 0.5936
48/92 [==============>……………] - ETA: 2s - loss: 1.0006 - accuracy: 0.5975
49/92 [==============>……………] - ETA: 2s - loss: 0.9997 - accuracy: 0.5981
50/92 [===============>…………..] - ETA: 2s - loss: 0.9995 - accuracy: 0.5980
51/92 [===============>…………..] - ETA: 2s - loss: 0.9969 - accuracy: 0.5998
52/92 [===============>…………..] - ETA: 2s - loss: 0.9952 - accuracy: 0.5996
53/92 [================>………….] - ETA: 2s - loss: 0.9974 - accuracy: 0.5983
54/92 [================>………….] - ETA: 2s - loss: 1.0079 - accuracy: 0.5913
55/92 [================>………….] - ETA: 2s - loss: 1.0106 - accuracy: 0.5908
56/92 [=================>…………] - ETA: 2s - loss: 1.0121 - accuracy: 0.5880
57/92 [=================>…………] - ETA: 2s - loss: 1.0146 - accuracy: 0.5887
58/92 [=================>…………] - ETA: 1s - loss: 1.0174 - accuracy: 0.5882
59/92 [==================>………..] - ETA: 1s - loss: 1.0150 - accuracy: 0.5883
60/92 [==================>………..] - ETA: 1s - loss: 1.0120 - accuracy: 0.5884
61/92 [==================>………..] - ETA: 1s - loss: 1.0103 - accuracy: 0.5890
62/92 [===================>……….] - ETA: 1s - loss: 1.0095 - accuracy: 0.5901
63/92 [===================>……….] - ETA: 1s - loss: 1.0114 - accuracy: 0.5886
64/92 [===================>……….] - ETA: 1s - loss: 1.0114 - accuracy: 0.5897
65/92 [====================>………] - ETA: 1s - loss: 1.0108 - accuracy: 0.5907
66/92 [====================>………] - ETA: 1s - loss: 1.0115 - accuracy: 0.5903
67/92 [====================>………] - ETA: 1s - loss: 1.0117 - accuracy: 0.5894
68/92 [=====================>……..] - ETA: 1s - loss: 1.0125 - accuracy: 0.5881
69/92 [=====================>……..] - ETA: 1s - loss: 1.0151 - accuracy: 0.5850
70/92 [=====================>……..] - ETA: 1s - loss: 1.0146 - accuracy: 0.5865
71/92 [======================>…….] - ETA: 1s - loss: 1.0158 - accuracy: 0.5866
72/92 [======================>…….] - ETA: 1s - loss: 1.0140 - accuracy: 0.5871
73/92 [======================>…….] - ETA: 1s - loss: 1.0130 - accuracy: 0.5872
74/92 [=======================>……] - ETA: 1s - loss: 1.0127 - accuracy: 0.5873
75/92 [=======================>……] - ETA: 0s - loss: 1.0109 - accuracy: 0.5886
76/92 [=======================>……] - ETA: 0s - loss: 1.0074 - accuracy: 0.5895
77/92 [========================>…..] - ETA: 0s - loss: 1.0038 - accuracy: 0.5916
78/92 [========================>…..] - ETA: 0s - loss: 1.0003 - accuracy: 0.5936
79/92 [========================>…..] - ETA: 0s - loss: 0.9982 - accuracy: 0.5944
80/92 [=========================>….] - ETA: 0s - loss: 0.9978 - accuracy: 0.5929
81/92 [=========================>….] - ETA: 0s - loss: 1.0002 - accuracy: 0.5940
82/92 [=========================>….] - ETA: 0s - loss: 0.9975 - accuracy: 0.5944
83/92 [==========================>…] - ETA: 0s - loss: 0.9982 - accuracy: 0.5948
84/92 [==========================>…] - ETA: 0s - loss: 0.9979 - accuracy: 0.5963
85/92 [==========================>…] - ETA: 0s - loss: 0.9960 - accuracy: 0.5970
86/92 [===========================>..] - ETA: 0s - loss: 0.9941 - accuracy: 0.5977
87/92 [===========================>..] - ETA: 0s - loss: 0.9931 - accuracy: 0.5973
88/92 [===========================>..] - ETA: 0s - loss: 0.9948 - accuracy: 0.5954
89/92 [============================>.] - ETA: 0s - loss: 0.9953 - accuracy: 0.5951
90/92 [============================>.] - ETA: 0s - loss: 0.9947 - accuracy: 0.5961
91/92 [============================>.] - ETA: 0s - loss: 0.9932 - accuracy: 0.5964
92/92 [==============================] - ETA: 0s - loss: 0.9956 - accuracy: 0.5974
92/92 [==============================] - 6s 64ms/step - loss: 0.9956 - accuracy: 0.5974 - val_loss: 0.9920 - val_accuracy: 0.6090
Epoch 3/15
1/92 [..............................] - ETA: 7s - loss: 1.2602 - accuracy: 0.4688
2/92 [..............................] - ETA: 5s - loss: 1.1814 - accuracy: 0.5781
3/92 [..............................] - ETA: 5s - loss: 1.1491 - accuracy: 0.5625
4/92 [>.............................] - ETA: 5s - loss: 1.0875 - accuracy: 0.5781
5/92 [>.............................] - ETA: 5s - loss: 1.0316 - accuracy: 0.5875
6/92 [>.............................] - ETA: 4s - loss: 1.0206 - accuracy: 0.5833
7/92 [=>............................] - ETA: 4s - loss: 0.9818 - accuracy: 0.5938
8/92 [=>............................] - ETA: 4s - loss: 1.0018 - accuracy: 0.5859
9/92 [=>............................] - ETA: 4s - loss: 0.9855 - accuracy: 0.5938
10/92 [==>………………………] - ETA: 4s - loss: 0.9760 - accuracy: 0.5969
11/92 [==>………………………] - ETA: 4s - loss: 0.9811 - accuracy: 0.5881
12/92 [==>………………………] - ETA: 4s - loss: 0.9836 - accuracy: 0.5859
13/92 [===>……………………..] - ETA: 4s - loss: 0.9757 - accuracy: 0.5889
14/92 [===>……………………..] - ETA: 4s - loss: 0.9660 - accuracy: 0.5893
15/92 [===>……………………..] - ETA: 4s - loss: 0.9619 - accuracy: 0.5938
16/92 [====>…………………….] - ETA: 4s - loss: 0.9688 - accuracy: 0.5898
17/92 [====>…………………….] - ETA: 4s - loss: 0.9691 - accuracy: 0.5919
18/92 [====>…………………….] - ETA: 4s - loss: 0.9729 - accuracy: 0.5938
20/92 [=====>……………………] - ETA: 4s - loss: 0.9704 - accuracy: 0.5934
21/92 [=====>……………………] - ETA: 4s - loss: 0.9652 - accuracy: 0.5934
22/92 [======>…………………..] - ETA: 4s - loss: 0.9528 - accuracy: 0.6006
23/92 [======>…………………..] - ETA: 4s - loss: 0.9511 - accuracy: 0.6044
24/92 [======>…………………..] - ETA: 3s - loss: 0.9597 - accuracy: 0.6026
25/92 [=======>………………….] - ETA: 3s - loss: 0.9707 - accuracy: 0.5972
26/92 [=======>………………….] - ETA: 3s - loss: 0.9649 - accuracy: 0.5971
27/92 [=======>………………….] - ETA: 3s - loss: 0.9528 - accuracy: 0.6016
28/92 [========>…………………] - ETA: 3s - loss: 0.9453 - accuracy: 0.6059
29/92 [========>…………………] - ETA: 3s - loss: 0.9458 - accuracy: 0.6065
30/92 [========>…………………] - ETA: 3s - loss: 0.9467 - accuracy: 0.6061
31/92 [=========>………………..] - ETA: 3s - loss: 0.9432 - accuracy: 0.6098
32/92 [=========>………………..] - ETA: 3s - loss: 0.9430 - accuracy: 0.6093
33/92 [=========>………………..] - ETA: 3s - loss: 0.9351 - accuracy: 0.6164
34/92 [==========>……………….] - ETA: 3s - loss: 0.9405 - accuracy: 0.6139
35/92 [==========>……………….] - ETA: 3s - loss: 0.9356 - accuracy: 0.6169
36/92 [==========>……………….] - ETA: 3s - loss: 0.9322 - accuracy: 0.6215
37/92 [===========>………………] - ETA: 3s - loss: 0.9363 - accuracy: 0.6199
38/92 [===========>………………] - ETA: 3s - loss: 0.9325 - accuracy: 0.6217
39/92 [===========>………………] - ETA: 3s - loss: 0.9322 - accuracy: 0.6234
40/92 [============>……………..] - ETA: 3s - loss: 0.9291 - accuracy: 0.6250
41/92 [============>……………..] - ETA: 2s - loss: 0.9252 - accuracy: 0.6242
42/92 [============>……………..] - ETA: 2s - loss: 0.9226 - accuracy: 0.6257
43/92 [=============>…………….] - ETA: 2s - loss: 0.9213 - accuracy: 0.6250
44/92 [=============>…………….] - ETA: 2s - loss: 0.9232 - accuracy: 0.6243
45/92 [=============>…………….] - ETA: 2s - loss: 0.9261 - accuracy: 0.6222
46/92 [==============>……………] - ETA: 2s - loss: 0.9277 - accuracy: 0.6209
47/92 [==============>……………] - ETA: 2s - loss: 0.9308 - accuracy: 0.6197
48/92 [==============>……………] - ETA: 2s - loss: 0.9392 - accuracy: 0.6145
49/92 [==============>……………] - ETA: 2s - loss: 0.9396 - accuracy: 0.6122
50/92 [===============>…………..] - ETA: 2s - loss: 0.9369 - accuracy: 0.6137
51/92 [===============>…………..] - ETA: 2s - loss: 0.9361 - accuracy: 0.6139
52/92 [===============>…………..] - ETA: 2s - loss: 0.9326 - accuracy: 0.6147
53/92 [================>………….] - ETA: 2s - loss: 0.9335 - accuracy: 0.6149
54/92 [================>………….] - ETA: 2s - loss: 0.9319 - accuracy: 0.6169
55/92 [================>………….] - ETA: 2s - loss: 0.9303 - accuracy: 0.6170
56/92 [=================>…………] - ETA: 2s - loss: 0.9289 - accuracy: 0.6183
57/92 [=================>…………] - ETA: 2s - loss: 0.9316 - accuracy: 0.6167
58/92 [=================>…………] - ETA: 1s - loss: 0.9314 - accuracy: 0.6163
59/92 [==================>………..] - ETA: 1s - loss: 0.9313 - accuracy: 0.6165
60/92 [==================>………..] - ETA: 1s - loss: 0.9282 - accuracy: 0.6182
61/92 [==================>………..] - ETA: 1s - loss: 0.9264 - accuracy: 0.6188
62/92 [===================>……….] - ETA: 1s - loss: 0.9249 - accuracy: 0.6194
63/92 [===================>……….] - ETA: 1s - loss: 0.9295 - accuracy: 0.6165
64/92 [===================>……….] - ETA: 1s - loss: 0.9288 - accuracy: 0.6157
65/92 [====================>………] - ETA: 1s - loss: 0.9234 - accuracy: 0.6178
66/92 [====================>………] - ETA: 1s - loss: 0.9228 - accuracy: 0.6179
67/92 [====================>………] - ETA: 1s - loss: 0.9232 - accuracy: 0.6170
68/92 [=====================>……..] - ETA: 1s - loss: 0.9240 - accuracy: 0.6172
69/92 [=====================>……..] - ETA: 1s - loss: 0.9200 - accuracy: 0.6205
70/92 [=====================>……..] - ETA: 1s - loss: 0.9244 - accuracy: 0.6196
71/92 [======================>…….] - ETA: 1s - loss: 0.9237 - accuracy: 0.6197
72/92 [======================>…….] - ETA: 1s - loss: 0.9253 - accuracy: 0.6193
73/92 [======================>…….] - ETA: 1s - loss: 0.9243 - accuracy: 0.6203
74/92 [=======================>……] - ETA: 1s - loss: 0.9259 - accuracy: 0.6195
75/92 [=======================>……] - ETA: 0s - loss: 0.9242 - accuracy: 0.6204
76/92 [=======================>……] - ETA: 0s - loss: 0.9216 - accuracy: 0.6213
77/92 [========================>…..] - ETA: 0s - loss: 0.9203 - accuracy: 0.6209
78/92 [========================>…..] - ETA: 0s - loss: 0.9200 - accuracy: 0.6214
79/92 [========================>…..] - ETA: 0s - loss: 0.9181 - accuracy: 0.6226
80/92 [=========================>….] - ETA: 0s - loss: 0.9185 - accuracy: 0.6226
81/92 [=========================>….] - ETA: 0s - loss: 0.9160 - accuracy: 0.6250
82/92 [=========================>….] - ETA: 0s - loss: 0.9186 - accuracy: 0.6250
83/92 [==========================>…] - ETA: 0s - loss: 0.9164 - accuracy: 0.6258
84/92 [==========================>…] - ETA: 0s - loss: 0.9167 - accuracy: 0.6269
85/92 [==========================>…] - ETA: 0s - loss: 0.9177 - accuracy: 0.6265
86/92 [===========================>..] - ETA: 0s - loss: 0.9183 - accuracy: 0.6276
87/92 [===========================>..] - ETA: 0s - loss: 0.9182 - accuracy: 0.6275
88/92 [===========================>..] - ETA: 0s - loss: 0.9156 - accuracy: 0.6278
89/92 [============================>.] - ETA: 0s - loss: 0.9135 - accuracy: 0.6292
90/92 [============================>.] - ETA: 0s - loss: 0.9121 - accuracy: 0.6302
91/92 [============================>.] - ETA: 0s - loss: 0.9129 - accuracy: 0.6298
92/92 [==============================] - ETA: 0s - loss: 0.9155 - accuracy: 0.6298
92/92 [==============================] - 6s 64ms/step - loss: 0.9155 - accuracy: 0.6298 - val_loss: 0.8959 - val_accuracy: 0.6621
Epoch 4/15
1/92 [..............................] - ETA: 7s - loss: 0.7704 - accuracy: 0.7812
2/92 [..............................] - ETA: 5s - loss: 0.8739 - accuracy: 0.6562
3/92 [..............................] - ETA: 5s - loss: 0.9644 - accuracy: 0.6146
4/92 [>.............................] - ETA: 5s - loss: 0.9070 - accuracy: 0.6484
5/92 [>.............................] - ETA: 4s - loss: 0.8696 - accuracy: 0.6625
6/92 [>.............................] - ETA: 4s - loss: 0.8536 - accuracy: 0.6562
7/92 [=>............................] - ETA: 4s - loss: 0.8587 - accuracy: 0.6473
8/92 [=>............................] - ETA: 4s - loss: 0.8727 - accuracy: 0.6523
9/92 [=>............................] - ETA: 4s - loss: 0.8413 - accuracy: 0.6701
10/92 [==>………………………] - ETA: 4s - loss: 0.8577 - accuracy: 0.6594
11/92 [==>………………………] - ETA: 4s - loss: 0.8386 - accuracy: 0.6733
12/92 [==>………………………] - ETA: 4s - loss: 0.8637 - accuracy: 0.6589
13/92 [===>……………………..] - ETA: 4s - loss: 0.8819 - accuracy: 0.6659
14/92 [===>……………………..] - ETA: 4s - loss: 0.8783 - accuracy: 0.6674
15/92 [===>……………………..] - ETA: 4s - loss: 0.8797 - accuracy: 0.6667
16/92 [====>…………………….] - ETA: 4s - loss: 0.8644 - accuracy: 0.6777
17/92 [====>…………………….] - ETA: 4s - loss: 0.8715 - accuracy: 0.6746
18/92 [====>…………………….] - ETA: 4s - loss: 0.8544 - accuracy: 0.6788
19/92 [=====>……………………] - ETA: 4s - loss: 0.8484 - accuracy: 0.6809
20/92 [=====>……………………] - ETA: 4s - loss: 0.8429 - accuracy: 0.6828
21/92 [=====>……………………] - ETA: 4s - loss: 0.8352 - accuracy: 0.6860
22/92 [======>…………………..] - ETA: 4s - loss: 0.8293 - accuracy: 0.6875
23/92 [======>…………………..] - ETA: 3s - loss: 0.8324 - accuracy: 0.6861
24/92 [======>…………………..] - ETA: 3s - loss: 0.8321 - accuracy: 0.6875
25/92 [=======>………………….] - ETA: 3s - loss: 0.8377 - accuracy: 0.6913
26/92 [=======>………………….] - ETA: 3s - loss: 0.8366 - accuracy: 0.6923
27/92 [=======>………………….] - ETA: 3s - loss: 0.8278 - accuracy: 0.6933
28/92 [========>…………………] - ETA: 3s - loss: 0.8303 - accuracy: 0.6942
29/92 [========>…………………] - ETA: 3s - loss: 0.8305 - accuracy: 0.6950
30/92 [========>…………………] - ETA: 3s - loss: 0.8342 - accuracy: 0.6958
31/92 [=========>………………..] - ETA: 3s - loss: 0.8350 - accuracy: 0.6956
32/92 [=========>………………..] - ETA: 3s - loss: 0.8386 - accuracy: 0.6914
33/92 [=========>………………..] - ETA: 3s - loss: 0.8354 - accuracy: 0.6922
34/92 [==========>……………….] - ETA: 3s - loss: 0.8424 - accuracy: 0.6921
35/92 [==========>……………….] - ETA: 3s - loss: 0.8367 - accuracy: 0.6920
36/92 [==========>……………….] - ETA: 3s - loss: 0.8349 - accuracy: 0.6936
37/92 [===========>………………] - ETA: 3s - loss: 0.8365 - accuracy: 0.6926
38/92 [===========>………………] - ETA: 3s - loss: 0.8451 - accuracy: 0.6891
39/92 [===========>………………] - ETA: 3s - loss: 0.8401 - accuracy: 0.6899
40/92 [============>……………..] - ETA: 3s - loss: 0.8397 - accuracy: 0.6891
41/92 [============>……………..] - ETA: 2s - loss: 0.8379 - accuracy: 0.6913
42/92 [============>……………..] - ETA: 2s - loss: 0.8459 - accuracy: 0.6868
43/92 [=============>…………….] - ETA: 2s - loss: 0.8410 - accuracy: 0.6860
44/92 [=============>…………….] - ETA: 2s - loss: 0.8352 - accuracy: 0.6889
46/92 [==============>……………] - ETA: 2s - loss: 0.8372 - accuracy: 0.6872
47/92 [==============>……………] - ETA: 2s - loss: 0.8341 - accuracy: 0.6885
48/92 [==============>……………] - ETA: 2s - loss: 0.8279 - accuracy: 0.6918
49/92 [==============>……………] - ETA: 2s - loss: 0.8294 - accuracy: 0.6917
50/92 [===============>…………..] - ETA: 2s - loss: 0.8300 - accuracy: 0.6928
51/92 [===============>…………..] - ETA: 2s - loss: 0.8275 - accuracy: 0.6940
52/92 [===============>…………..] - ETA: 2s - loss: 0.8267 - accuracy: 0.6944
53/92 [================>………….] - ETA: 2s - loss: 0.8255 - accuracy: 0.6961
54/92 [================>………….] - ETA: 2s - loss: 0.8220 - accuracy: 0.6977
55/92 [================>………….] - ETA: 2s - loss: 0.8198 - accuracy: 0.6975
56/92 [=================>…………] - ETA: 2s - loss: 0.8172 - accuracy: 0.6979
57/92 [=================>…………] - ETA: 2s - loss: 0.8155 - accuracy: 0.6982
58/92 [=================>…………] - ETA: 1s - loss: 0.8128 - accuracy: 0.6997
59/92 [==================>………..] - ETA: 1s - loss: 0.8129 - accuracy: 0.7000
60/92 [==================>………..] - ETA: 1s - loss: 0.8170 - accuracy: 0.6987
61/92 [==================>………..] - ETA: 1s - loss: 0.8182 - accuracy: 0.6980
62/92 [===================>……….] - ETA: 1s - loss: 0.8189 - accuracy: 0.6964
63/92 [===================>……….] - ETA: 1s - loss: 0.8193 - accuracy: 0.6952
64/92 [===================>……….] - ETA: 1s - loss: 0.8194 - accuracy: 0.6961
65/92 [====================>………] - ETA: 1s - loss: 0.8215 - accuracy: 0.6955
66/92 [====================>………] - ETA: 1s - loss: 0.8210 - accuracy: 0.6953
67/92 [====================>………] - ETA: 1s - loss: 0.8223 - accuracy: 0.6952
68/92 [=====================>……..] - ETA: 1s - loss: 0.8207 - accuracy: 0.6960
69/92 [=====================>……..] - ETA: 1s - loss: 0.8182 - accuracy: 0.6977
70/92 [=====================>……..] - ETA: 1s - loss: 0.8195 - accuracy: 0.6962
71/92 [======================>…….] - ETA: 1s - loss: 0.8194 - accuracy: 0.6961
72/92 [======================>…….] - ETA: 1s - loss: 0.8208 - accuracy: 0.6956
73/92 [======================>…….] - ETA: 1s - loss: 0.8190 - accuracy: 0.6963
74/92 [=======================>……] - ETA: 1s - loss: 0.8170 - accuracy: 0.6970
75/92 [=======================>……] - ETA: 0s - loss: 0.8158 - accuracy: 0.6977
76/92 [=======================>……] - ETA: 0s - loss: 0.8179 - accuracy: 0.6955
77/92 [========================>…..] - ETA: 0s - loss: 0.8176 - accuracy: 0.6958
78/92 [========================>…..] - ETA: 0s - loss: 0.8175 - accuracy: 0.6957
79/92 [========================>…..] - ETA: 0s - loss: 0.8188 - accuracy: 0.6952
80/92 [=========================>….] - ETA: 0s - loss: 0.8172 - accuracy: 0.6959
81/92 [=========================>….] - ETA: 0s - loss: 0.8217 - accuracy: 0.6939
82/92 [=========================>….] - ETA: 0s - loss: 0.8197 - accuracy: 0.6950
83/92 [==========================>…] - ETA: 0s - loss: 0.8180 - accuracy: 0.6952
84/92 [==========================>…] - ETA: 0s - loss: 0.8183 - accuracy: 0.6951
85/92 [==========================>…] - ETA: 0s - loss: 0.8190 - accuracy: 0.6947
86/92 [===========================>..] - ETA: 0s - loss: 0.8208 - accuracy: 0.6928
87/92 [===========================>..] - ETA: 0s - loss: 0.8207 - accuracy: 0.6931
88/92 [===========================>..] - ETA: 0s - loss: 0.8205 - accuracy: 0.6930
89/92 [============================>.] - ETA: 0s - loss: 0.8188 - accuracy: 0.6937
90/92 [============================>.] - ETA: 0s - loss: 0.8180 - accuracy: 0.6939
91/92 [============================>.] - ETA: 0s - loss: 0.8167 - accuracy: 0.6946
92/92 [==============================] - ETA: 0s - loss: 0.8158 - accuracy: 0.6945
92/92 [==============================] - 6s 64ms/step - loss: 0.8158 - accuracy: 0.6945 - val_loss: 0.8530 - val_accuracy: 0.6757
Epoch 5/15
1/92 [..............................] - ETA: 7s - loss: 0.8907 - accuracy: 0.7188
2/92 [..............................] - ETA: 5s - loss: 0.8773 - accuracy: 0.6875
3/92 [..............................] - ETA: 5s - loss: 0.8330 - accuracy: 0.6771
4/92 [>.............................] - ETA: 5s - loss: 0.7960 - accuracy: 0.6953
5/92 [>.............................] - ETA: 5s - loss: 0.8390 - accuracy: 0.6812
6/92 [>.............................] - ETA: 5s - loss: 0.8144 - accuracy: 0.6771
7/92 [=>............................] - ETA: 5s - loss: 0.8024 - accuracy: 0.6920
8/92 [=>............................] - ETA: 4s - loss: 0.8119 - accuracy: 0.6914
9/92 [=>............................] - ETA: 4s - loss: 0.8164 - accuracy: 0.6875
10/92 [==>………………………] - ETA: 4s - loss: 0.7930 - accuracy: 0.7000
11/92 [==>………………………] - ETA: 4s - loss: 0.7694 - accuracy: 0.7102
12/92 [==>………………………] - ETA: 4s - loss: 0.7519 - accuracy: 0.7161
13/92 [===>……………………..] - ETA: 4s - loss: 0.7302 - accuracy: 0.7260
14/92 [===>……………………..] - ETA: 4s - loss: 0.7293 - accuracy: 0.7210
15/92 [===>……………………..] - ETA: 4s - loss: 0.7256 - accuracy: 0.7208
16/92 [====>…………………….] - ETA: 4s - loss: 0.7320 - accuracy: 0.7207
17/92 [====>…………………….] - ETA: 4s - loss: 0.7327 - accuracy: 0.7243
18/92 [====>…………………….] - ETA: 4s - loss: 0.7351 - accuracy: 0.7205
19/92 [=====>……………………] - ETA: 4s - loss: 0.7352 - accuracy: 0.7204
20/92 [=====>……………………] - ETA: 4s - loss: 0.7393 - accuracy: 0.7203
21/92 [=====>……………………] - ETA: 4s - loss: 0.7438 - accuracy: 0.7217
22/92 [======>…………………..] - ETA: 4s - loss: 0.7462 - accuracy: 0.7216
23/92 [======>…………………..] - ETA: 3s - loss: 0.7597 - accuracy: 0.7147
24/92 [======>…………………..] - ETA: 3s - loss: 0.7511 - accuracy: 0.7188
25/92 [=======>………………….] - ETA: 3s - loss: 0.7569 - accuracy: 0.7150
26/92 [=======>………………….] - ETA: 3s - loss: 0.7474 - accuracy: 0.7175
27/92 [=======>………………….] - ETA: 3s - loss: 0.7583 - accuracy: 0.7141
28/92 [========>…………………] - ETA: 3s - loss: 0.7548 - accuracy: 0.7154
29/92 [========>…………………] - ETA: 3s - loss: 0.7512 - accuracy: 0.7155
30/92 [========>…………………] - ETA: 3s - loss: 0.7478 - accuracy: 0.7156
31/92 [=========>………………..] - ETA: 3s - loss: 0.7464 - accuracy: 0.7157
32/92 [=========>………………..] - ETA: 3s - loss: 0.7567 - accuracy: 0.7129
33/92 [=========>………………..] - ETA: 3s - loss: 0.7518 - accuracy: 0.7159
34/92 [==========>……………….] - ETA: 3s - loss: 0.7569 - accuracy: 0.7160
35/92 [==========>……………….] - ETA: 3s - loss: 0.7563 - accuracy: 0.7152
36/92 [==========>……………….] - ETA: 3s - loss: 0.7563 - accuracy: 0.7153
37/92 [===========>………………] - ETA: 3s - loss: 0.7607 - accuracy: 0.7111
38/92 [===========>………………] - ETA: 3s - loss: 0.7650 - accuracy: 0.7072
39/92 [===========>………………] - ETA: 3s - loss: 0.7642 - accuracy: 0.7083
40/92 [============>……………..] - ETA: 3s - loss: 0.7700 - accuracy: 0.7078
41/92 [============>……………..] - ETA: 2s - loss: 0.7711 - accuracy: 0.7096
42/92 [============>……………..] - ETA: 2s - loss: 0.7661 - accuracy: 0.7128
43/92 [=============>…………….] - ETA: 2s - loss: 0.7633 - accuracy: 0.7129
44/92 [=============>…………….] - ETA: 2s - loss: 0.7632 - accuracy: 0.7124
45/92 [=============>…………….] - ETA: 2s - loss: 0.7625 - accuracy: 0.7125
46/92 [==============>……………] - ETA: 2s - loss: 0.7612 - accuracy: 0.7120
47/92 [==============>……………] - ETA: 2s - loss: 0.7590 - accuracy: 0.7108
48/92 [==============>……………] - ETA: 2s - loss: 0.7586 - accuracy: 0.7103
49/92 [==============>……………] - ETA: 2s - loss: 0.7561 - accuracy: 0.7111
50/92 [===============>…………..] - ETA: 2s - loss: 0.7645 - accuracy: 0.7050
52/92 [===============>…………..] - ETA: 2s - loss: 0.7645 - accuracy: 0.7047
53/92 [================>………….] - ETA: 2s - loss: 0.7692 - accuracy: 0.7038
54/92 [================>………….] - ETA: 2s - loss: 0.7705 - accuracy: 0.7035
55/92 [================>………….] - ETA: 2s - loss: 0.7802 - accuracy: 0.6986
56/92 [=================>…………] - ETA: 2s - loss: 0.7780 - accuracy: 0.6990
57/92 [=================>…………] - ETA: 2s - loss: 0.7770 - accuracy: 0.6982
58/92 [=================>…………] - ETA: 1s - loss: 0.7749 - accuracy: 0.6997
59/92 [==================>………..] - ETA: 1s - loss: 0.7784 - accuracy: 0.6984
60/92 [==================>………..] - ETA: 1s - loss: 0.7787 - accuracy: 0.6967
61/92 [==================>………..] - ETA: 1s - loss: 0.7795 - accuracy: 0.6955
62/92 [===================>……….] - ETA: 1s - loss: 0.7780 - accuracy: 0.6964
63/92 [===================>……….] - ETA: 1s - loss: 0.7771 - accuracy: 0.6977
64/92 [===================>……….] - ETA: 1s - loss: 0.7814 - accuracy: 0.6961
65/92 [====================>………] - ETA: 1s - loss: 0.7836 - accuracy: 0.6950
66/92 [====================>………] - ETA: 1s - loss: 0.7805 - accuracy: 0.6968
67/92 [====================>………] - ETA: 1s - loss: 0.7795 - accuracy: 0.6966
68/92 [=====================>……..] - ETA: 1s - loss: 0.7841 - accuracy: 0.6933
69/92 [=====================>……..] - ETA: 1s - loss: 0.7849 - accuracy: 0.6932
70/92 [=====================>……..] - ETA: 1s - loss: 0.7907 - accuracy: 0.6927
71/92 [======================>…….] - ETA: 1s - loss: 0.7915 - accuracy: 0.6917
72/92 [======================>…….] - ETA: 1s - loss: 0.7909 - accuracy: 0.6916
73/92 [======================>…….] - ETA: 1s - loss: 0.7939 - accuracy: 0.6903
74/92 [=======================>……] - ETA: 1s - loss: 0.7967 - accuracy: 0.6890
75/92 [=======================>……] - ETA: 0s - loss: 0.7993 - accuracy: 0.6873
76/92 [=======================>……] - ETA: 0s - loss: 0.8003 - accuracy: 0.6861
77/92 [========================>…..] - ETA: 0s - loss: 0.8013 - accuracy: 0.6853
78/92 [========================>…..] - ETA: 0s - loss: 0.8004 - accuracy: 0.6853
79/92 [========================>…..] - ETA: 0s - loss: 0.7983 - accuracy: 0.6861
80/92 [=========================>….] - ETA: 0s - loss: 0.8004 - accuracy: 0.6846
81/92 [=========================>….] - ETA: 0s - loss: 0.8001 - accuracy: 0.6854
82/92 [=========================>….] - ETA: 0s - loss: 0.7997 - accuracy: 0.6858
83/92 [==========================>…] - ETA: 0s - loss: 0.7988 - accuracy: 0.6869
84/92 [==========================>…] - ETA: 0s - loss: 0.7983 - accuracy: 0.6869
85/92 [==========================>…] - ETA: 0s - loss: 0.7975 - accuracy: 0.6881
86/92 [===========================>..] - ETA: 0s - loss: 0.7958 - accuracy: 0.6891
87/92 [===========================>..] - ETA: 0s - loss: 0.7945 - accuracy: 0.6902
88/92 [===========================>..] - ETA: 0s - loss: 0.7928 - accuracy: 0.6909
89/92 [============================>.] - ETA: 0s - loss: 0.7910 - accuracy: 0.6919
90/92 [============================>.] - ETA: 0s - loss: 0.7917 - accuracy: 0.6915
91/92 [============================>.] - ETA: 0s - loss: 0.7883 - accuracy: 0.6932
92/92 [==============================] - ETA: 0s - loss: 0.7896 - accuracy: 0.6931
92/92 [==============================] - 6s 63ms/step - loss: 0.7896 - accuracy: 0.6931 - val_loss: 0.8867 - val_accuracy: 0.6798
Epoch 6/15
1/92 [..............................] - ETA: 6s - loss: 0.5518 - accuracy: 0.7812
2/92 [..............................] - ETA: 5s - loss: 0.7630 - accuracy: 0.7500
3/92 [..............................] - ETA: 5s - loss: 0.7584 - accuracy: 0.7604
4/92 [>.............................] - ETA: 5s - loss: 0.7502 - accuracy: 0.7266
5/92 [>.............................] - ETA: 5s - loss: 0.7661 - accuracy: 0.7125
6/92 [>.............................] - ETA: 4s - loss: 0.7633 - accuracy: 0.7083
7/92 [=>............................] - ETA: 4s - loss: 0.7836 - accuracy: 0.7054
8/92 [=>............................] - ETA: 4s - loss: 0.7776 - accuracy: 0.7070
9/92 [=>............................] - ETA: 4s - loss: 0.7611 - accuracy: 0.7153
10/92 [==>………………………] - ETA: 4s - loss: 0.7587 - accuracy: 0.7125
11/92 [==>………………………] - ETA: 4s - loss: 0.7458 - accuracy: 0.7244
12/92 [==>………………………] - ETA: 4s - loss: 0.7555 - accuracy: 0.7266
13/92 [===>……………………..] - ETA: 4s - loss: 0.7522 - accuracy: 0.7308
14/92 [===>……………………..] - ETA: 4s - loss: 0.7398 - accuracy: 0.7277
15/92 [===>……………………..] - ETA: 4s - loss: 0.7376 - accuracy: 0.7312
16/92 [====>…………………….] - ETA: 4s - loss: 0.7344 - accuracy: 0.7285
17/92 [====>…………………….] - ETA: 4s - loss: 0.7325 - accuracy: 0.7298
18/92 [====>…………………….] - ETA: 4s - loss: 0.7301 - accuracy: 0.7292
19/92 [=====>……………………] - ETA: 4s - loss: 0.7525 - accuracy: 0.7237
20/92 [=====>……………………] - ETA: 4s - loss: 0.7644 - accuracy: 0.7188
21/92 [=====>……………………] - ETA: 4s - loss: 0.7723 - accuracy: 0.7158
22/92 [======>…………………..] - ETA: 4s - loss: 0.7636 - accuracy: 0.7202
23/92 [======>…………………..] - ETA: 3s - loss: 0.7545 - accuracy: 0.7228
24/92 [======>…………………..] - ETA: 3s - loss: 0.7522 - accuracy: 0.7227
25/92 [=======>………………….] - ETA: 3s - loss: 0.7536 - accuracy: 0.7200
26/92 [=======>………………….] - ETA: 3s - loss: 0.7700 - accuracy: 0.7103
27/92 [=======>………………….] - ETA: 3s - loss: 0.7697 - accuracy: 0.7106
28/92 [========>…………………] - ETA: 3s - loss: 0.7738 - accuracy: 0.7121
29/92 [========>…………………] - ETA: 3s - loss: 0.7679 - accuracy: 0.7155
30/92 [========>…………………] - ETA: 3s - loss: 0.7772 - accuracy: 0.7104
31/92 [=========>………………..] - ETA: 3s - loss: 0.7790 - accuracy: 0.7107
32/92 [=========>………………..] - ETA: 3s - loss: 0.7822 - accuracy: 0.7100
33/92 [=========>………………..] - ETA: 3s - loss: 0.7819 - accuracy: 0.7112
34/92 [==========>……………….] - ETA: 3s - loss: 0.7831 - accuracy: 0.7086
35/92 [==========>……………….] - ETA: 3s - loss: 0.7782 - accuracy: 0.7089
36/92 [==========>……………….] - ETA: 3s - loss: 0.7777 - accuracy: 0.7083
37/92 [===========>………………] - ETA: 3s - loss: 0.7794 - accuracy: 0.7078
38/92 [===========>………………] - ETA: 3s - loss: 0.7856 - accuracy: 0.7064
39/92 [===========>………………] - ETA: 3s - loss: 0.7847 - accuracy: 0.7067
40/92 [============>……………..] - ETA: 3s - loss: 0.7862 - accuracy: 0.7047
41/92 [============>……………..] - ETA: 2s - loss: 0.7830 - accuracy: 0.7058
42/92 [============>……………..] - ETA: 2s - loss: 0.7793 - accuracy: 0.7068
43/92 [=============>…………….] - ETA: 2s - loss: 0.7756 - accuracy: 0.7086
44/92 [=============>…………….] - ETA: 2s - loss: 0.7727 - accuracy: 0.7095
45/92 [=============>…………….] - ETA: 2s - loss: 0.7714 - accuracy: 0.7076
46/92 [==============>……………] - ETA: 2s - loss: 0.7723 - accuracy: 0.7079
47/92 [==============>……………] - ETA: 2s - loss: 0.7696 - accuracy: 0.7094
48/92 [==============>……………] - ETA: 2s - loss: 0.7686 - accuracy: 0.7109
49/92 [==============>……………] - ETA: 2s - loss: 0.7657 - accuracy: 0.7136
50/92 [===============>…………..] - ETA: 2s - loss: 0.7702 - accuracy: 0.7119
51/92 [===============>…………..] - ETA: 2s - loss: 0.7732 - accuracy: 0.7126
52/92 [===============>…………..] - ETA: 2s - loss: 0.7772 - accuracy: 0.7109
53/92 [================>………….] - ETA: 2s - loss: 0.7780 - accuracy: 0.7099
54/92 [================>………….] - ETA: 2s - loss: 0.7742 - accuracy: 0.7124
55/92 [================>………….] - ETA: 2s - loss: 0.7721 - accuracy: 0.7136
56/92 [=================>…………] - ETA: 2s - loss: 0.7717 - accuracy: 0.7132
57/92 [=================>…………] - ETA: 2s - loss: 0.7688 - accuracy: 0.7138
58/92 [=================>…………] - ETA: 1s - loss: 0.7733 - accuracy: 0.7101
59/92 [==================>………..] - ETA: 1s - loss: 0.7728 - accuracy: 0.7119
60/92 [==================>………..] - ETA: 1s - loss: 0.7746 - accuracy: 0.7109
61/92 [==================>………..] - ETA: 1s - loss: 0.7697 - accuracy: 0.7126
62/92 [===================>……….] - ETA: 1s - loss: 0.7746 - accuracy: 0.7117
63/92 [===================>……….] - ETA: 1s - loss: 0.7725 - accuracy: 0.7123
64/92 [===================>……….] - ETA: 1s - loss: 0.7711 - accuracy: 0.7134
65/92 [====================>………] - ETA: 1s - loss: 0.7713 - accuracy: 0.7130
66/92 [====================>………] - ETA: 1s - loss: 0.7690 - accuracy: 0.7135
67/92 [====================>………] - ETA: 1s - loss: 0.7682 - accuracy: 0.7141
68/92 [=====================>……..] - ETA: 1s - loss: 0.7670 - accuracy: 0.7146
69/92 [=====================>……..] - ETA: 1s - loss: 0.7655 - accuracy: 0.7156
70/92 [=====================>……..] - ETA: 1s - loss: 0.7639 - accuracy: 0.7161
71/92 [======================>…….] - ETA: 1s - loss: 0.7664 - accuracy: 0.7139
72/92 [======================>…….] - ETA: 1s - loss: 0.7650 - accuracy: 0.7153
73/92 [======================>…….] - ETA: 1s - loss: 0.7669 - accuracy: 0.7132
74/92 [=======================>……] - ETA: 1s - loss: 0.7677 - accuracy: 0.7124
76/92 [=======================>……] - ETA: 0s - loss: 0.7683 - accuracy: 0.7120
77/92 [========================>…..] - ETA: 0s - loss: 0.7676 - accuracy: 0.7113
78/92 [========================>…..] - ETA: 0s - loss: 0.7679 - accuracy: 0.7122
79/92 [========================>…..] - ETA: 0s - loss: 0.7655 - accuracy: 0.7127
80/92 [=========================>….] - ETA: 0s - loss: 0.7639 - accuracy: 0.7132
81/92 [=========================>….] - ETA: 0s - loss: 0.7643 - accuracy: 0.7136
82/92 [=========================>….] - ETA: 0s - loss: 0.7672 - accuracy: 0.7122
83/92 [==========================>…] - ETA: 0s - loss: 0.7681 - accuracy: 0.7115
84/92 [==========================>…] - ETA: 0s - loss: 0.7652 - accuracy: 0.7131
85/92 [==========================>…] - ETA: 0s - loss: 0.7664 - accuracy: 0.7124
86/92 [===========================>..] - ETA: 0s - loss: 0.7678 - accuracy: 0.7114
87/92 [===========================>..] - ETA: 0s - loss: 0.7660 - accuracy: 0.7118
88/92 [===========================>..] - ETA: 0s - loss: 0.7654 - accuracy: 0.7115
89/92 [============================>.] - ETA: 0s - loss: 0.7658 - accuracy: 0.7109
90/92 [============================>.] - ETA: 0s - loss: 0.7648 - accuracy: 0.7107
91/92 [============================>.] - ETA: 0s - loss: 0.7648 - accuracy: 0.7107
92/92 [==============================] - ETA: 0s - loss: 0.7647 - accuracy: 0.7115
92/92 [==============================] - 6s 64ms/step - loss: 0.7647 - accuracy: 0.7115 - val_loss: 0.7599 - val_accuracy: 0.7016
Epoch 7/15
1/92 [..............................] - ETA: 7s - loss: 0.4912 - accuracy: 0.8438
2/92 [..............................] - ETA: 5s - loss: 0.5197 - accuracy: 0.7812
3/92 [..............................] - ETA: 5s - loss: 0.6350 - accuracy: 0.7396
4/92 [>.............................] - ETA: 5s - loss: 0.6448 - accuracy: 0.7500
5/92 [>.............................] - ETA: 5s - loss: 0.6741 - accuracy: 0.7375
6/92 [>.............................] - ETA: 5s - loss: 0.7069 - accuracy: 0.7344
7/92 [=>............................] - ETA: 5s - loss: 0.7105 - accuracy: 0.7321
8/92 [=>............................] - ETA: 5s - loss: 0.7082 - accuracy: 0.7344
9/92 [=>............................] - ETA: 4s - loss: 0.7131 - accuracy: 0.7326
10/92 [==>………………………] - ETA: 4s - loss: 0.7040 - accuracy: 0.7312
11/92 [==>………………………] - ETA: 4s - loss: 0.7117 - accuracy: 0.7244
12/92 [==>………………………] - ETA: 4s - loss: 0.7376 - accuracy: 0.7161
13/92 [===>……………………..] - ETA: 4s - loss: 0.7223 - accuracy: 0.7236
14/92 [===>……………………..] - ETA: 4s - loss: 0.7167 - accuracy: 0.7210
15/92 [===>……………………..] - ETA: 4s - loss: 0.7110 - accuracy: 0.7250
16/92 [====>…………………….] - ETA: 4s - loss: 0.6943 - accuracy: 0.7324
17/92 [====>…………………….] - ETA: 4s - loss: 0.6881 - accuracy: 0.7335
18/92 [====>…………………….] - ETA: 4s - loss: 0.6882 - accuracy: 0.7326
19/92 [=====>……………………] - ETA: 4s - loss: 0.6898 - accuracy: 0.7319
20/92 [=====>……………………] - ETA: 4s - loss: 0.6850 - accuracy: 0.7328
21/92 [=====>……………………] - ETA: 4s - loss: 0.6983 - accuracy: 0.7292
22/92 [======>…………………..] - ETA: 4s - loss: 0.6962 - accuracy: 0.7301
23/92 [======>…………………..] - ETA: 4s - loss: 0.6905 - accuracy: 0.7323
24/92 [======>…………………..] - ETA: 4s - loss: 0.6827 - accuracy: 0.7370
25/92 [=======>………………….] - ETA: 3s - loss: 0.6814 - accuracy: 0.7350
26/92 [=======>………………….] - ETA: 3s - loss: 0.6826 - accuracy: 0.7332
27/92 [=======>………………….] - ETA: 3s - loss: 0.6718 - accuracy: 0.7396
28/92 [========>…………………] - ETA: 3s - loss: 0.6691 - accuracy: 0.7388
29/92 [========>…………………] - ETA: 3s - loss: 0.6769 - accuracy: 0.7349
30/92 [========>…………………] - ETA: 3s - loss: 0.6747 - accuracy: 0.7365
31/92 [=========>………………..] - ETA: 3s - loss: 0.6848 - accuracy: 0.7339
32/92 [=========>………………..] - ETA: 3s - loss: 0.6793 - accuracy: 0.7383
33/92 [=========>………………..] - ETA: 3s - loss: 0.6826 - accuracy: 0.7377
34/92 [==========>……………….] - ETA: 3s - loss: 0.6777 - accuracy: 0.7408
35/92 [==========>……………….] - ETA: 3s - loss: 0.6865 - accuracy: 0.7357
36/92 [==========>……………….] - ETA: 3s - loss: 0.6899 - accuracy: 0.7352
37/92 [===========>………………] - ETA: 3s - loss: 0.6925 - accuracy: 0.7340
38/92 [===========>………………] - ETA: 3s - loss: 0.6955 - accuracy: 0.7327
39/92 [===========>………………] - ETA: 3s - loss: 0.6942 - accuracy: 0.7324
40/92 [============>……………..] - ETA: 3s - loss: 0.7007 - accuracy: 0.7297
41/92 [============>……………..] - ETA: 2s - loss: 0.7064 - accuracy: 0.7264
42/92 [============>……………..] - ETA: 2s - loss: 0.7118 - accuracy: 0.7262
43/92 [=============>…………….] - ETA: 2s - loss: 0.7098 - accuracy: 0.7267
44/92 [=============>…………….] - ETA: 2s - loss: 0.7088 - accuracy: 0.7294
45/92 [=============>…………….] - ETA: 2s - loss: 0.7112 - accuracy: 0.7292
46/92 [==============>……………] - ETA: 2s - loss: 0.7105 - accuracy: 0.7283
47/92 [==============>……………] - ETA: 2s - loss: 0.7076 - accuracy: 0.7294
48/92 [==============>……………] - ETA: 2s - loss: 0.7085 - accuracy: 0.7272
49/92 [==============>……………] - ETA: 2s - loss: 0.7099 - accuracy: 0.7277
50/92 [===============>…………..] - ETA: 2s - loss: 0.7086 - accuracy: 0.7287
51/92 [===============>…………..] - ETA: 2s - loss: 0.7087 - accuracy: 0.7298
52/92 [===============>…………..] - ETA: 2s - loss: 0.7098 - accuracy: 0.7302
53/92 [================>………….] - ETA: 2s - loss: 0.7106 - accuracy: 0.7300
54/92 [================>………….] - ETA: 2s - loss: 0.7093 - accuracy: 0.7315
55/92 [================>………….] - ETA: 2s - loss: 0.7085 - accuracy: 0.7318
56/92 [=================>…………] - ETA: 2s - loss: 0.7107 - accuracy: 0.7299
57/92 [=================>…………] - ETA: 2s - loss: 0.7082 - accuracy: 0.7308
58/92 [=================>…………] - ETA: 1s - loss: 0.7098 - accuracy: 0.7295
59/92 [==================>………..] - ETA: 1s - loss: 0.7162 - accuracy: 0.7251
60/92 [==================>………..] - ETA: 1s - loss: 0.7135 - accuracy: 0.7260
61/92 [==================>………..] - ETA: 1s - loss: 0.7132 - accuracy: 0.7259
62/92 [===================>……….] - ETA: 1s - loss: 0.7137 - accuracy: 0.7263
63/92 [===================>……….] - ETA: 1s - loss: 0.7139 - accuracy: 0.7257
64/92 [===================>……….] - ETA: 1s - loss: 0.7139 - accuracy: 0.7251
65/92 [====================>………] - ETA: 1s - loss: 0.7107 - accuracy: 0.7264
66/92 [====================>………] - ETA: 1s - loss: 0.7091 - accuracy: 0.7268
67/92 [====================>………] - ETA: 1s - loss: 0.7080 - accuracy: 0.7276
68/92 [=====================>……..] - ETA: 1s - loss: 0.7085 - accuracy: 0.7275
69/92 [=====================>……..] - ETA: 1s - loss: 0.7085 - accuracy: 0.7274
70/92 [=====================>……..] - ETA: 1s - loss: 0.7086 - accuracy: 0.7277
71/92 [======================>…….] - ETA: 1s - loss: 0.7068 - accuracy: 0.7293
72/92 [======================>…….] - ETA: 1s - loss: 0.7058 - accuracy: 0.7300
74/92 [=======================>……] - ETA: 1s - loss: 0.7033 - accuracy: 0.7292
75/92 [=======================>……] - ETA: 0s - loss: 0.7020 - accuracy: 0.7304
76/92 [=======================>……] - ETA: 0s - loss: 0.7010 - accuracy: 0.7306
77/92 [========================>…..] - ETA: 0s - loss: 0.6969 - accuracy: 0.7325
78/92 [========================>…..] - ETA: 0s - loss: 0.6963 - accuracy: 0.7327
79/92 [========================>…..] - ETA: 0s - loss: 0.6964 - accuracy: 0.7329
80/92 [=========================>….] - ETA: 0s - loss: 0.6943 - accuracy: 0.7343
81/92 [=========================>….] - ETA: 0s - loss: 0.6968 - accuracy: 0.7345
82/92 [=========================>….] - ETA: 0s - loss: 0.6975 - accuracy: 0.7343
83/92 [==========================>…] - ETA: 0s - loss: 0.7000 - accuracy: 0.7330
84/92 [==========================>…] - ETA: 0s - loss: 0.7012 - accuracy: 0.7328
85/92 [==========================>…] - ETA: 0s - loss: 0.6997 - accuracy: 0.7334
86/92 [===========================>..] - ETA: 0s - loss: 0.6986 - accuracy: 0.7336
87/92 [===========================>..] - ETA: 0s - loss: 0.6983 - accuracy: 0.7338
88/92 [===========================>..] - ETA: 0s - loss: 0.6983 - accuracy: 0.7340
89/92 [============================>.] - ETA: 0s - loss: 0.6967 - accuracy: 0.7338
90/92 [============================>.] - ETA: 0s - loss: 0.6940 - accuracy: 0.7357
91/92 [============================>.] - ETA: 0s - loss: 0.6932 - accuracy: 0.7362
92/92 [==============================] - ETA: 0s - loss: 0.6932 - accuracy: 0.7360
92/92 [==============================] - 6s 64ms/step - loss: 0.6932 - accuracy: 0.7360 - val_loss: 0.7731 - val_accuracy: 0.6853
Epoch 8/15
1/92 [..............................] - ETA: 7s - loss: 0.5886 - accuracy: 0.7500
2/92 [..............................] - ETA: 5s - loss: 0.6209 - accuracy: 0.7500
3/92 [..............................] - ETA: 5s - loss: 0.6834 - accuracy: 0.7396
4/92 [>.............................] - ETA: 5s - loss: 0.6812 - accuracy: 0.7266
5/92 [>.............................] - ETA: 5s - loss: 0.6540 - accuracy: 0.7312
6/92 [>.............................] - ETA: 5s - loss: 0.6633 - accuracy: 0.7240
7/92 [=>............................] - ETA: 4s - loss: 0.6415 - accuracy: 0.7411
8/92 [=>............................] - ETA: 4s - loss: 0.6256 - accuracy: 0.7539
9/92 [=>............................] - ETA: 4s - loss: 0.5989 - accuracy: 0.7604
10/92 [==>………………………] - ETA: 4s - loss: 0.6047 - accuracy: 0.7500
11/92 [==>………………………] - ETA: 4s - loss: 0.6068 - accuracy: 0.7500
12/92 [==>………………………] - ETA: 4s - loss: 0.6024 - accuracy: 0.7500
13/92 [===>……………………..] - ETA: 4s - loss: 0.6013 - accuracy: 0.7548
14/92 [===>……………………..] - ETA: 4s - loss: 0.5978 - accuracy: 0.7545
15/92 [===>……………………..] - ETA: 4s - loss: 0.6020 - accuracy: 0.7479
16/92 [====>…………………….] - ETA: 4s - loss: 0.5969 - accuracy: 0.7500
17/92 [====>…………………….] - ETA: 4s - loss: 0.6147 - accuracy: 0.7408
18/92 [====>…………………….] - ETA: 4s - loss: 0.6109 - accuracy: 0.7448
19/92 [=====>……………………] - ETA: 4s - loss: 0.6156 - accuracy: 0.7467
20/92 [=====>……………………] - ETA: 4s - loss: 0.6125 - accuracy: 0.7516
21/92 [=====>……………………] - ETA: 4s - loss: 0.6098 - accuracy: 0.7530
22/92 [======>…………………..] - ETA: 4s - loss: 0.6131 - accuracy: 0.7528
23/92 [======>…………………..] - ETA: 4s - loss: 0.6149 - accuracy: 0.7527
24/92 [======>…………………..] - ETA: 3s - loss: 0.6234 - accuracy: 0.7474
25/92 [=======>………………….] - ETA: 3s - loss: 0.6214 - accuracy: 0.7487
26/92 [=======>………………….] - ETA: 3s - loss: 0.6183 - accuracy: 0.7512
27/92 [=======>………………….] - ETA: 3s - loss: 0.6153 - accuracy: 0.7535
28/92 [========>…………………] - ETA: 3s - loss: 0.6128 - accuracy: 0.7556
29/92 [========>…………………] - ETA: 3s - loss: 0.6245 - accuracy: 0.7522
30/92 [========>…………………] - ETA: 3s - loss: 0.6246 - accuracy: 0.7510
31/92 [=========>………………..] - ETA: 3s - loss: 0.6228 - accuracy: 0.7530
32/92 [=========>………………..] - ETA: 3s - loss: 0.6247 - accuracy: 0.7539
33/92 [=========>………………..] - ETA: 3s - loss: 0.6282 - accuracy: 0.7509
34/92 [==========>……………….] - ETA: 3s - loss: 0.6380 - accuracy: 0.7491
35/92 [==========>……………….] - ETA: 3s - loss: 0.6360 - accuracy: 0.7500
36/92 [==========>……………….] - ETA: 3s - loss: 0.6347 - accuracy: 0.7526
37/92 [===========>………………] - ETA: 3s - loss: 0.6365 - accuracy: 0.7525
38/92 [===========>………………] - ETA: 3s - loss: 0.6336 - accuracy: 0.7549
39/92 [===========>………………] - ETA: 3s - loss: 0.6360 - accuracy: 0.7532
40/92 [============>……………..] - ETA: 3s - loss: 0.6311 - accuracy: 0.7547
41/92 [============>……………..] - ETA: 2s - loss: 0.6326 - accuracy: 0.7553
42/92 [============>……………..] - ETA: 2s - loss: 0.6372 - accuracy: 0.7545
43/92 [=============>…………….] - ETA: 2s - loss: 0.6439 - accuracy: 0.7536
44/92 [=============>…………….] - ETA: 2s - loss: 0.6455 - accuracy: 0.7521
46/92 [==============>……………] - ETA: 2s - loss: 0.6455 - accuracy: 0.7514
47/92 [==============>……………] - ETA: 2s - loss: 0.6464 - accuracy: 0.7520
48/92 [==============>……………] - ETA: 2s - loss: 0.6517 - accuracy: 0.7513
49/92 [==============>……………] - ETA: 2s - loss: 0.6550 - accuracy: 0.7513
50/92 [===============>…………..] - ETA: 2s - loss: 0.6535 - accuracy: 0.7519
51/92 [===============>…………..] - ETA: 2s - loss: 0.6543 - accuracy: 0.7525
52/92 [===============>…………..] - ETA: 2s - loss: 0.6592 - accuracy: 0.7482
53/92 [================>………….] - ETA: 2s - loss: 0.6656 - accuracy: 0.7447
54/92 [================>………….] - ETA: 2s - loss: 0.6636 - accuracy: 0.7459
55/92 [================>………….] - ETA: 2s - loss: 0.6646 - accuracy: 0.7454
56/92 [=================>…………] - ETA: 2s - loss: 0.6710 - accuracy: 0.7444
57/92 [=================>…………] - ETA: 2s - loss: 0.6695 - accuracy: 0.7450
58/92 [=================>…………] - ETA: 1s - loss: 0.6672 - accuracy: 0.7462
59/92 [==================>………..] - ETA: 1s - loss: 0.6702 - accuracy: 0.7452
60/92 [==================>………..] - ETA: 1s - loss: 0.6684 - accuracy: 0.7453
61/92 [==================>………..] - ETA: 1s - loss: 0.6693 - accuracy: 0.7454
62/92 [===================>……….] - ETA: 1s - loss: 0.6713 - accuracy: 0.7449
63/92 [===================>……….] - ETA: 1s - loss: 0.6722 - accuracy: 0.7440
64/92 [===================>……….] - ETA: 1s - loss: 0.6705 - accuracy: 0.7451
65/92 [====================>………] - ETA: 1s - loss: 0.6720 - accuracy: 0.7452
66/92 [====================>………] - ETA: 1s - loss: 0.6696 - accuracy: 0.7462
67/92 [====================>………] - ETA: 1s - loss: 0.6726 - accuracy: 0.7458
68/92 [=====================>……..] - ETA: 1s - loss: 0.6737 - accuracy: 0.7454
69/92 [=====================>……..] - ETA: 1s - loss: 0.6717 - accuracy: 0.7459
70/92 [=====================>……..] - ETA: 1s - loss: 0.6693 - accuracy: 0.7460
71/92 [======================>…….] - ETA: 1s - loss: 0.6691 - accuracy: 0.7460
72/92 [======================>…….] - ETA: 1s - loss: 0.6727 - accuracy: 0.7443
73/92 [======================>…….] - ETA: 1s - loss: 0.6732 - accuracy: 0.7440
74/92 [=======================>……] - ETA: 1s - loss: 0.6720 - accuracy: 0.7445
75/92 [=======================>……] - ETA: 0s - loss: 0.6715 - accuracy: 0.7458
76/92 [=======================>……] - ETA: 0s - loss: 0.6703 - accuracy: 0.7459
77/92 [========================>…..] - ETA: 0s - loss: 0.6712 - accuracy: 0.7455
78/92 [========================>…..] - ETA: 0s - loss: 0.6727 - accuracy: 0.7456
79/92 [========================>…..] - ETA: 0s - loss: 0.6713 - accuracy: 0.7460
80/92 [=========================>….] - ETA: 0s - loss: 0.6690 - accuracy: 0.7473
81/92 [=========================>….] - ETA: 0s - loss: 0.6698 - accuracy: 0.7457
82/92 [=========================>….] - ETA: 0s - loss: 0.6702 - accuracy: 0.7450
83/92 [==========================>…] - ETA: 0s - loss: 0.6702 - accuracy: 0.7455
84/92 [==========================>…] - ETA: 0s - loss: 0.6699 - accuracy: 0.7451
85/92 [==========================>…] - ETA: 0s - loss: 0.6690 - accuracy: 0.7463
86/92 [===========================>..] - ETA: 0s - loss: 0.6715 - accuracy: 0.7449
87/92 [===========================>..] - ETA: 0s - loss: 0.6732 - accuracy: 0.7439
88/92 [===========================>..] - ETA: 0s - loss: 0.6717 - accuracy: 0.7439
89/92 [============================>.] - ETA: 0s - loss: 0.6743 - accuracy: 0.7433
90/92 [============================>.] - ETA: 0s - loss: 0.6769 - accuracy: 0.7427
91/92 [============================>.] - ETA: 0s - loss: 0.6763 - accuracy: 0.7428
92/92 [==============================] - ETA: 0s - loss: 0.6821 - accuracy: 0.7398
92/92 [==============================] - 6s 64ms/step - loss: 0.6821 - accuracy: 0.7398 - val_loss: 0.7942 - val_accuracy: 0.6812
Epoch 9/15
1/92 [..............................] - ETA: 6s - loss: 0.5542 - accuracy: 0.7812
2/92 [..............................] - ETA: 5s - loss: 0.6572 - accuracy: 0.7500
3/92 [..............................] - ETA: 5s - loss: 0.6516 - accuracy: 0.7604
4/92 [>.............................] - ETA: 5s - loss: 0.6615 - accuracy: 0.7344
5/92 [>.............................] - ETA: 5s - loss: 0.6472 - accuracy: 0.7625
6/92 [>.............................] - ETA: 5s - loss: 0.6448 - accuracy: 0.7604
7/92 [=>............................] - ETA: 4s - loss: 0.6265 - accuracy: 0.7545
8/92 [=>............................] - ETA: 4s - loss: 0.6567 - accuracy: 0.7422
9/92 [=>............................] - ETA: 4s - loss: 0.6387 - accuracy: 0.7465
10/92 [==>………………………] - ETA: 4s - loss: 0.6596 - accuracy: 0.7406
11/92 [==>………………………] - ETA: 4s - loss: 0.6548 - accuracy: 0.7415
12/92 [==>………………………] - ETA: 4s - loss: 0.6587 - accuracy: 0.7370
13/92 [===>……………………..] - ETA: 4s - loss: 0.6604 - accuracy: 0.7356
14/92 [===>……………………..] - ETA: 4s - loss: 0.6458 - accuracy: 0.7433
15/92 [===>……………………..] - ETA: 4s - loss: 0.6432 - accuracy: 0.7479
16/92 [====>…………………….] - ETA: 4s - loss: 0.6368 - accuracy: 0.7500
17/92 [====>…………………….] - ETA: 4s - loss: 0.6318 - accuracy: 0.7574
18/92 [====>…………………….] - ETA: 4s - loss: 0.6263 - accuracy: 0.7604
19/92 [=====>……………………] - ETA: 4s - loss: 0.6300 - accuracy: 0.7599
20/92 [=====>……………………] - ETA: 4s - loss: 0.6349 - accuracy: 0.7578
21/92 [=====>……………………] - ETA: 4s - loss: 0.6289 - accuracy: 0.7589
22/92 [======>…………………..] - ETA: 4s - loss: 0.6234 - accuracy: 0.7614
23/92 [======>…………………..] - ETA: 4s - loss: 0.6200 - accuracy: 0.7609
24/92 [======>…………………..] - ETA: 3s - loss: 0.6159 - accuracy: 0.7630
25/92 [=======>………………….] - ETA: 3s - loss: 0.6139 - accuracy: 0.7625
26/92 [=======>………………….] - ETA: 3s - loss: 0.6118 - accuracy: 0.7620
27/92 [=======>………………….] - ETA: 3s - loss: 0.6134 - accuracy: 0.7581
28/92 [========>…………………] - ETA: 3s - loss: 0.6103 - accuracy: 0.7567
29/92 [========>…………………] - ETA: 3s - loss: 0.6040 - accuracy: 0.7586
30/92 [========>…………………] - ETA: 3s - loss: 0.6029 - accuracy: 0.7604
31/92 [=========>………………..] - ETA: 3s - loss: 0.6022 - accuracy: 0.7621
32/92 [=========>………………..] - ETA: 3s - loss: 0.6037 - accuracy: 0.7607
33/92 [=========>………………..] - ETA: 3s - loss: 0.6135 - accuracy: 0.7566
34/92 [==========>……………….] - ETA: 3s - loss: 0.6141 - accuracy: 0.7574
35/92 [==========>……………….] - ETA: 3s - loss: 0.6172 - accuracy: 0.7554
36/92 [==========>……………….] - ETA: 3s - loss: 0.6220 - accuracy: 0.7552
37/92 [===========>………………] - ETA: 3s - loss: 0.6279 - accuracy: 0.7525
38/92 [===========>………………] - ETA: 3s - loss: 0.6295 - accuracy: 0.7500
39/92 [===========>………………] - ETA: 3s - loss: 0.6328 - accuracy: 0.7492
40/92 [============>……………..] - ETA: 3s - loss: 0.6366 - accuracy: 0.7477
41/92 [============>……………..] - ETA: 2s - loss: 0.6435 - accuracy: 0.7470
42/92 [============>……………..] - ETA: 2s - loss: 0.6465 - accuracy: 0.7448
43/92 [=============>…………….] - ETA: 2s - loss: 0.6493 - accuracy: 0.7442
44/92 [=============>…………….] - ETA: 2s - loss: 0.6462 - accuracy: 0.7450
45/92 [=============>…………….] - ETA: 2s - loss: 0.6506 - accuracy: 0.7437
46/92 [==============>……………] - ETA: 2s - loss: 0.6490 - accuracy: 0.7432
47/92 [==============>……………] - ETA: 2s - loss: 0.6511 - accuracy: 0.7414
48/92 [==============>……………] - ETA: 2s - loss: 0.6528 - accuracy: 0.7415
49/92 [==============>……………] - ETA: 2s - loss: 0.6529 - accuracy: 0.7411
50/92 [===============>…………..] - ETA: 2s - loss: 0.6542 - accuracy: 0.7419
51/92 [===============>…………..] - ETA: 2s - loss: 0.6546 - accuracy: 0.7408
52/92 [===============>…………..] - ETA: 2s - loss: 0.6496 - accuracy: 0.7434
53/92 [================>………….] - ETA: 2s - loss: 0.6550 - accuracy: 0.7417
54/92 [================>………….] - ETA: 2s - loss: 0.6544 - accuracy: 0.7413
55/92 [================>………….] - ETA: 2s - loss: 0.6563 - accuracy: 0.7420
56/92 [=================>…………] - ETA: 2s - loss: 0.6577 - accuracy: 0.7416
57/92 [=================>…………] - ETA: 2s - loss: 0.6562 - accuracy: 0.7429
58/92 [=================>…………] - ETA: 1s - loss: 0.6543 - accuracy: 0.7441
59/92 [==================>………..] - ETA: 1s - loss: 0.6554 - accuracy: 0.7431
60/92 [==================>………..] - ETA: 1s - loss: 0.6605 - accuracy: 0.7401
61/92 [==================>………..] - ETA: 1s - loss: 0.6579 - accuracy: 0.7423
62/92 [===================>……….] - ETA: 1s - loss: 0.6568 - accuracy: 0.7414
64/92 [===================>……….] - ETA: 1s - loss: 0.6570 - accuracy: 0.7412
65/92 [====================>………] - ETA: 1s - loss: 0.6617 - accuracy: 0.7384
66/92 [====================>………] - ETA: 1s - loss: 0.6606 - accuracy: 0.7395
67/92 [====================>………] - ETA: 1s - loss: 0.6609 - accuracy: 0.7392
68/92 [=====================>……..] - ETA: 1s - loss: 0.6580 - accuracy: 0.7408
69/92 [=====================>……..] - ETA: 1s - loss: 0.6592 - accuracy: 0.7409
70/92 [=====================>……..] - ETA: 1s - loss: 0.6564 - accuracy: 0.7424
71/92 [======================>…….] - ETA: 1s - loss: 0.6546 - accuracy: 0.7434
72/92 [======================>…….] - ETA: 1s - loss: 0.6555 - accuracy: 0.7435
73/92 [======================>…….] - ETA: 1s - loss: 0.6536 - accuracy: 0.7444
74/92 [=======================>……] - ETA: 1s - loss: 0.6532 - accuracy: 0.7449
75/92 [=======================>……] - ETA: 0s - loss: 0.6585 - accuracy: 0.7425
76/92 [=======================>……] - ETA: 0s - loss: 0.6595 - accuracy: 0.7426
77/92 [========================>…..] - ETA: 0s - loss: 0.6558 - accuracy: 0.7447
78/92 [========================>…..] - ETA: 0s - loss: 0.6535 - accuracy: 0.7456
79/92 [========================>…..] - ETA: 0s - loss: 0.6509 - accuracy: 0.7472
80/92 [=========================>….] - ETA: 0s - loss: 0.6487 - accuracy: 0.7480
81/92 [=========================>….] - ETA: 0s - loss: 0.6491 - accuracy: 0.7473
82/92 [=========================>….] - ETA: 0s - loss: 0.6480 - accuracy: 0.7477
83/92 [==========================>…] - ETA: 0s - loss: 0.6493 - accuracy: 0.7481
84/92 [==========================>…] - ETA: 0s - loss: 0.6504 - accuracy: 0.7466
85/92 [==========================>…] - ETA: 0s - loss: 0.6491 - accuracy: 0.7474
86/92 [===========================>..] - ETA: 0s - loss: 0.6478 - accuracy: 0.7482
87/92 [===========================>..] - ETA: 0s - loss: 0.6478 - accuracy: 0.7486
88/92 [===========================>..] - ETA: 0s - loss: 0.6470 - accuracy: 0.7504
89/92 [============================>.] - ETA: 0s - loss: 0.6463 - accuracy: 0.7511
90/92 [============================>.] - ETA: 0s - loss: 0.6476 - accuracy: 0.7510
91/92 [============================>.] - ETA: 0s - loss: 0.6475 - accuracy: 0.7507
92/92 [==============================] - ETA: 0s - loss: 0.6469 - accuracy: 0.7510
92/92 [==============================] - 6s 63ms/step - loss: 0.6469 - accuracy: 0.7510 - val_loss: 0.7705 - val_accuracy: 0.6921
Epoch 10/15
1/92 [..............................] - ETA: 7s - loss: 0.5019 - accuracy: 0.8438
2/92 [..............................] - ETA: 5s - loss: 0.5805 - accuracy: 0.7969
3/92 [..............................] - ETA: 5s - loss: 0.6209 - accuracy: 0.7604
4/92 [>.............................] - ETA: 5s - loss: 0.6745 - accuracy: 0.7109
5/92 [>.............................] - ETA: 5s - loss: 0.6841 - accuracy: 0.7125
6/92 [>.............................] - ETA: 4s - loss: 0.6510 - accuracy: 0.7188
7/92 [=>............................] - ETA: 4s - loss: 0.6254 - accuracy: 0.7411
8/92 [=>............................] - ETA: 4s - loss: 0.6364 - accuracy: 0.7383
9/92 [=>............................] - ETA: 4s - loss: 0.6488 - accuracy: 0.7292
10/92 [==>………………………] - ETA: 4s - loss: 0.6263 - accuracy: 0.7406
11/92 [==>………………………] - ETA: 4s - loss: 0.6172 - accuracy: 0.7443
12/92 [==>………………………] - ETA: 4s - loss: 0.6176 - accuracy: 0.7422
13/92 [===>……………………..] - ETA: 4s - loss: 0.6043 - accuracy: 0.7452
14/92 [===>……………………..] - ETA: 4s - loss: 0.6265 - accuracy: 0.7433
15/92 [===>……………………..] - ETA: 4s - loss: 0.6181 - accuracy: 0.7479
16/92 [====>…………………….] - ETA: 4s - loss: 0.6257 - accuracy: 0.7520
17/92 [====>…………………….] - ETA: 4s - loss: 0.6240 - accuracy: 0.7574
18/92 [====>…………………….] - ETA: 4s - loss: 0.6256 - accuracy: 0.7535
19/92 [=====>……………………] - ETA: 4s - loss: 0.6189 - accuracy: 0.7566
20/92 [=====>……………………] - ETA: 4s - loss: 0.6213 - accuracy: 0.7578
21/92 [=====>……………………] - ETA: 4s - loss: 0.6196 - accuracy: 0.7589
22/92 [======>…………………..] - ETA: 4s - loss: 0.6144 - accuracy: 0.7642
23/92 [======>…………………..] - ETA: 3s - loss: 0.6133 - accuracy: 0.7649
24/92 [======>…………………..] - ETA: 3s - loss: 0.6115 - accuracy: 0.7669
25/92 [=======>………………….] - ETA: 3s - loss: 0.6141 - accuracy: 0.7638
26/92 [=======>………………….] - ETA: 3s - loss: 0.6078 - accuracy: 0.7656
27/92 [=======>………………….] - ETA: 3s - loss: 0.6107 - accuracy: 0.7639
28/92 [========>…………………] - ETA: 3s - loss: 0.6194 - accuracy: 0.7578
29/92 [========>…………………] - ETA: 3s - loss: 0.6195 - accuracy: 0.7575
30/92 [========>…………………] - ETA: 3s - loss: 0.6170 - accuracy: 0.7604
31/92 [=========>………………..] - ETA: 3s - loss: 0.6153 - accuracy: 0.7601
32/92 [=========>………………..] - ETA: 3s - loss: 0.6169 - accuracy: 0.7588
33/92 [=========>………………..] - ETA: 3s - loss: 0.6183 - accuracy: 0.7576
34/92 [==========>……………….] - ETA: 3s - loss: 0.6117 - accuracy: 0.7610
35/92 [==========>……………….] - ETA: 3s - loss: 0.6171 - accuracy: 0.7607
36/92 [==========>……………….] - ETA: 3s - loss: 0.6148 - accuracy: 0.7613
37/92 [===========>………………] - ETA: 3s - loss: 0.6160 - accuracy: 0.7601
38/92 [===========>………………] - ETA: 3s - loss: 0.6141 - accuracy: 0.7615
39/92 [===========>………………] - ETA: 3s - loss: 0.6149 - accuracy: 0.7612
40/92 [============>……………..] - ETA: 3s - loss: 0.6139 - accuracy: 0.7625
41/92 [============>……………..] - ETA: 2s - loss: 0.6141 - accuracy: 0.7630
42/92 [============>……………..] - ETA: 2s - loss: 0.6113 - accuracy: 0.7634
43/92 [=============>…………….] - ETA: 2s - loss: 0.6049 - accuracy: 0.7667
44/92 [=============>…………….] - ETA: 2s - loss: 0.6052 - accuracy: 0.7670
46/92 [==============>……………] - ETA: 2s - loss: 0.6061 - accuracy: 0.7678
47/92 [==============>……………] - ETA: 2s - loss: 0.6016 - accuracy: 0.7701
48/92 [==============>……………] - ETA: 2s - loss: 0.6008 - accuracy: 0.7703
49/92 [==============>……………] - ETA: 2s - loss: 0.6031 - accuracy: 0.7705
50/92 [===============>…………..] - ETA: 2s - loss: 0.6029 - accuracy: 0.7714
51/92 [===============>…………..] - ETA: 2s - loss: 0.6044 - accuracy: 0.7691
52/92 [===============>…………..] - ETA: 2s - loss: 0.6106 - accuracy: 0.7645
53/92 [================>………….] - ETA: 2s - loss: 0.6055 - accuracy: 0.7660
54/92 [================>………….] - ETA: 2s - loss: 0.6085 - accuracy: 0.7645
55/92 [================>………….] - ETA: 2s - loss: 0.6119 - accuracy: 0.7637
56/92 [=================>…………] - ETA: 2s - loss: 0.6117 - accuracy: 0.7640
57/92 [=================>…………] - ETA: 2s - loss: 0.6108 - accuracy: 0.7649
58/92 [=================>…………] - ETA: 1s - loss: 0.6119 - accuracy: 0.7641
59/92 [==================>………..] - ETA: 1s - loss: 0.6111 - accuracy: 0.7660
60/92 [==================>………..] - ETA: 1s - loss: 0.6074 - accuracy: 0.7667
61/92 [==================>………..] - ETA: 1s - loss: 0.6087 - accuracy: 0.7665
62/92 [===================>……….] - ETA: 1s - loss: 0.6106 - accuracy: 0.7672
63/92 [===================>……….] - ETA: 1s - loss: 0.6161 - accuracy: 0.7659
64/92 [===================>……….] - ETA: 1s - loss: 0.6146 - accuracy: 0.7672
65/92 [====================>………] - ETA: 1s - loss: 0.6118 - accuracy: 0.7688
66/92 [====================>………] - ETA: 1s - loss: 0.6131 - accuracy: 0.7681
67/92 [====================>………] - ETA: 1s - loss: 0.6130 - accuracy: 0.7678
68/92 [=====================>……..] - ETA: 1s - loss: 0.6126 - accuracy: 0.7680
69/92 [=====================>……..] - ETA: 1s - loss: 0.6167 - accuracy: 0.7655
70/92 [=====================>……..] - ETA: 1s - loss: 0.6165 - accuracy: 0.7652
71/92 [======================>…….] - ETA: 1s - loss: 0.6148 - accuracy: 0.7655
72/92 [======================>…….] - ETA: 1s - loss: 0.6191 - accuracy: 0.7635
73/92 [======================>…….] - ETA: 1s - loss: 0.6240 - accuracy: 0.7625
74/92 [=======================>……] - ETA: 1s - loss: 0.6252 - accuracy: 0.7614
75/92 [=======================>……] - ETA: 0s - loss: 0.6270 - accuracy: 0.7596
76/92 [=======================>……] - ETA: 0s - loss: 0.6247 - accuracy: 0.7603
77/92 [========================>…..] - ETA: 0s - loss: 0.6228 - accuracy: 0.7610
78/92 [========================>…..] - ETA: 0s - loss: 0.6224 - accuracy: 0.7609
79/92 [========================>…..] - ETA: 0s - loss: 0.6223 - accuracy: 0.7615
80/92 [=========================>….] - ETA: 0s - loss: 0.6221 - accuracy: 0.7614
81/92 [=========================>….] - ETA: 0s - loss: 0.6233 - accuracy: 0.7608
82/92 [=========================>….] - ETA: 0s - loss: 0.6214 - accuracy: 0.7615
83/92 [==========================>…] - ETA: 0s - loss: 0.6221 - accuracy: 0.7610
84/92 [==========================>…] - ETA: 0s - loss: 0.6238 - accuracy: 0.7616
85/92 [==========================>…] - ETA: 0s - loss: 0.6236 - accuracy: 0.7622
86/92 [===========================>..] - ETA: 0s - loss: 0.6234 - accuracy: 0.7624
87/92 [===========================>..] - ETA: 0s - loss: 0.6231 - accuracy: 0.7630
88/92 [===========================>..] - ETA: 0s - loss: 0.6217 - accuracy: 0.7632
89/92 [============================>.] - ETA: 0s - loss: 0.6214 - accuracy: 0.7641
90/92 [============================>.] - ETA: 0s - loss: 0.6248 - accuracy: 0.7639
91/92 [============================>.] - ETA: 0s - loss: 0.6238 - accuracy: 0.7645
92/92 [==============================] - ETA: 0s - loss: 0.6230 - accuracy: 0.7646
92/92 [==============================] - 6s 63ms/step - loss: 0.6230 - accuracy: 0.7646 - val_loss: 0.7725 - val_accuracy: 0.7153
Epoch 11/15
1/92 [..............................] - ETA: 7s - loss: 0.6668 - accuracy: 0.6875
2/92 [..............................] - ETA: 5s - loss: 0.5528 - accuracy: 0.7656
3/92 [..............................] - ETA: 5s - loss: 0.5535 - accuracy: 0.7917
4/92 [>.............................] - ETA: 5s - loss: 0.5296 - accuracy: 0.7969
5/92 [>.............................] - ETA: 5s - loss: 0.5133 - accuracy: 0.8062
6/92 [>.............................] - ETA: 4s - loss: 0.5098 - accuracy: 0.8073
7/92 [=>............................] - ETA: 4s - loss: 0.5332 - accuracy: 0.8036
8/92 [=>............................] - ETA: 4s - loss: 0.5426 - accuracy: 0.7969
9/92 [=>............................] - ETA: 4s - loss: 0.5770 - accuracy: 0.7778
10/92 [==>………………………] - ETA: 4s - loss: 0.6016 - accuracy: 0.7719
11/92 [==>………………………] - ETA: 4s - loss: 0.5975 - accuracy: 0.7699
12/92 [==>………………………] - ETA: 4s - loss: 0.5897 - accuracy: 0.7734
13/92 [===>……………………..] - ETA: 4s - loss: 0.5994 - accuracy: 0.7716
14/92 [===>……………………..] - ETA: 4s - loss: 0.5986 - accuracy: 0.7746
15/92 [===>……………………..] - ETA: 4s - loss: 0.5995 - accuracy: 0.7708
16/92 [====>…………………….] - ETA: 4s - loss: 0.6063 - accuracy: 0.7656
17/92 [====>…………………….] - ETA: 4s - loss: 0.6023 - accuracy: 0.7665
18/92 [====>…………………….] - ETA: 4s - loss: 0.6027 - accuracy: 0.7656
19/92 [=====>……………………] - ETA: 4s - loss: 0.5956 - accuracy: 0.7664
21/92 [=====>……………………] - ETA: 4s - loss: 0.5947 - accuracy: 0.7666
22/92 [======>…………………..] - ETA: 4s - loss: 0.5901 - accuracy: 0.7672
23/92 [======>…………………..] - ETA: 3s - loss: 0.5811 - accuracy: 0.7720
24/92 [======>…………………..] - ETA: 3s - loss: 0.5810 - accuracy: 0.7737
25/92 [=======>………………….] - ETA: 3s - loss: 0.5865 - accuracy: 0.7715
26/92 [=======>………………….] - ETA: 3s - loss: 0.5784 - accuracy: 0.7767
27/92 [=======>………………….] - ETA: 3s - loss: 0.5786 - accuracy: 0.7745
28/92 [========>…………………] - ETA: 3s - loss: 0.5726 - accuracy: 0.7770
29/92 [========>…………………] - ETA: 3s - loss: 0.5660 - accuracy: 0.7793
30/92 [========>…………………] - ETA: 3s - loss: 0.5637 - accuracy: 0.7805
31/92 [=========>………………..] - ETA: 3s - loss: 0.5661 - accuracy: 0.7785
32/92 [=========>………………..] - ETA: 3s - loss: 0.5745 - accuracy: 0.7766
33/92 [=========>………………..] - ETA: 3s - loss: 0.5816 - accuracy: 0.7748
34/92 [==========>……………….] - ETA: 3s - loss: 0.5781 - accuracy: 0.7750
35/92 [==========>……………….] - ETA: 3s - loss: 0.5772 - accuracy: 0.7734
36/92 [==========>……………….] - ETA: 3s - loss: 0.5729 - accuracy: 0.7753
37/92 [===========>………………] - ETA: 3s - loss: 0.5776 - accuracy: 0.7747
38/92 [===========>………………] - ETA: 3s - loss: 0.5781 - accuracy: 0.7781
39/92 [===========>………………] - ETA: 3s - loss: 0.5773 - accuracy: 0.7790
40/92 [============>……………..] - ETA: 3s - loss: 0.5783 - accuracy: 0.7799
41/92 [============>……………..] - ETA: 2s - loss: 0.5778 - accuracy: 0.7799
42/92 [============>……………..] - ETA: 2s - loss: 0.5755 - accuracy: 0.7792
43/92 [=============>…………….] - ETA: 2s - loss: 0.5769 - accuracy: 0.7792
44/92 [=============>…………….] - ETA: 2s - loss: 0.5776 - accuracy: 0.7786
45/92 [=============>…………….] - ETA: 2s - loss: 0.5752 - accuracy: 0.7793
46/92 [==============>……………] - ETA: 2s - loss: 0.5734 - accuracy: 0.7801
47/92 [==============>……………] - ETA: 2s - loss: 0.5765 - accuracy: 0.7787
48/92 [==============>……………] - ETA: 2s - loss: 0.5780 - accuracy: 0.7788
49/92 [==============>……………] - ETA: 2s - loss: 0.5799 - accuracy: 0.7776
50/92 [===============>…………..] - ETA: 2s - loss: 0.5836 - accuracy: 0.7770
51/92 [===============>…………..] - ETA: 2s - loss: 0.5823 - accuracy: 0.7777
52/92 [===============>…………..] - ETA: 2s - loss: 0.5808 - accuracy: 0.7790
53/92 [================>………….] - ETA: 2s - loss: 0.5838 - accuracy: 0.7778
54/92 [================>………….] - ETA: 2s - loss: 0.5808 - accuracy: 0.7791
55/92 [================>………….] - ETA: 2s - loss: 0.5803 - accuracy: 0.7780
56/92 [=================>…………] - ETA: 2s - loss: 0.5826 - accuracy: 0.7775
57/92 [=================>…………] - ETA: 2s - loss: 0.5896 - accuracy: 0.7742
58/92 [=================>…………] - ETA: 1s - loss: 0.5896 - accuracy: 0.7738
59/92 [==================>………..] - ETA: 1s - loss: 0.5893 - accuracy: 0.7739
60/92 [==================>………..] - ETA: 1s - loss: 0.5915 - accuracy: 0.7735
61/92 [==================>………..] - ETA: 1s - loss: 0.5931 - accuracy: 0.7726
62/92 [===================>……….] - ETA: 1s - loss: 0.5908 - accuracy: 0.7733
63/92 [===================>……….] - ETA: 1s - loss: 0.5886 - accuracy: 0.7744
64/92 [===================>……….] - ETA: 1s - loss: 0.5892 - accuracy: 0.7745
65/92 [====================>………] - ETA: 1s - loss: 0.5897 - accuracy: 0.7736
66/92 [====================>………] - ETA: 1s - loss: 0.5921 - accuracy: 0.7728
67/92 [====================>………] - ETA: 1s - loss: 0.5900 - accuracy: 0.7748
68/92 [=====================>……..] - ETA: 1s - loss: 0.5871 - accuracy: 0.7763
69/92 [=====================>……..] - ETA: 1s - loss: 0.5849 - accuracy: 0.7759
70/92 [=====================>……..] - ETA: 1s - loss: 0.5883 - accuracy: 0.7742
71/92 [======================>…….] - ETA: 1s - loss: 0.5860 - accuracy: 0.7752
72/92 [======================>…….] - ETA: 1s - loss: 0.5845 - accuracy: 0.7757
73/92 [======================>…….] - ETA: 1s - loss: 0.5850 - accuracy: 0.7762
74/92 [=======================>……] - ETA: 1s - loss: 0.5829 - accuracy: 0.7771
75/92 [=======================>……] - ETA: 0s - loss: 0.5818 - accuracy: 0.7780
76/92 [=======================>……] - ETA: 0s - loss: 0.5827 - accuracy: 0.7772
77/92 [========================>…..] - ETA: 0s - loss: 0.5818 - accuracy: 0.7761
78/92 [========================>…..] - ETA: 0s - loss: 0.5856 - accuracy: 0.7761
79/92 [========================>…..] - ETA: 0s - loss: 0.5870 - accuracy: 0.7758
80/92 [=========================>….] - ETA: 0s - loss: 0.5876 - accuracy: 0.7743
81/92 [=========================>….] - ETA: 0s - loss: 0.5868 - accuracy: 0.7748
82/92 [=========================>….] - ETA: 0s - loss: 0.5895 - accuracy: 0.7737
83/92 [==========================>…] - ETA: 0s - loss: 0.5908 - accuracy: 0.7727
84/92 [==========================>…] - ETA: 0s - loss: 0.5928 - accuracy: 0.7720
85/92 [==========================>…] - ETA: 0s - loss: 0.5920 - accuracy: 0.7718
86/92 [===========================>..] - ETA: 0s - loss: 0.5914 - accuracy: 0.7726
87/92 [===========================>..] - ETA: 0s - loss: 0.5921 - accuracy: 0.7723
88/92 [===========================>..] - ETA: 0s - loss: 0.5911 - accuracy: 0.7724
89/92 [============================>.] - ETA: 0s - loss: 0.5913 - accuracy: 0.7725
90/92 [============================>.] - ETA: 0s - loss: 0.5910 - accuracy: 0.7726
91/92 [============================>.] - ETA: 0s - loss: 0.5901 - accuracy: 0.7724
92/92 [==============================] - ETA: 0s - loss: 0.5883 - accuracy: 0.7725
92/92 [==============================] - 6s 64ms/step - loss: 0.5883 - accuracy: 0.7725 - val_loss: 0.7175 - val_accuracy: 0.7234
Epoch 12/15
1/92 [..............................] - ETA: 7s - loss: 0.5461 - accuracy: 0.7812
2/92 [..............................] - ETA: 5s - loss: 0.6078 - accuracy: 0.7500
3/92 [..............................] - ETA: 5s - loss: 0.5296 - accuracy: 0.7917
4/92 [>.............................] - ETA: 5s - loss: 0.5025 - accuracy: 0.8047
5/92 [>.............................] - ETA: 5s - loss: 0.5195 - accuracy: 0.7812
6/92 [>.............................] - ETA: 4s - loss: 0.4948 - accuracy: 0.7917
7/92 [=>............................] - ETA: 4s - loss: 0.4886 - accuracy: 0.7857
8/92 [=>............................] - ETA: 4s - loss: 0.5058 - accuracy: 0.7773
9/92 [=>............................] - ETA: 4s - loss: 0.4985 - accuracy: 0.7882
10/92 [==>………………………] - ETA: 4s - loss: 0.4993 - accuracy: 0.7969
11/92 [==>………………………] - ETA: 4s - loss: 0.4915 - accuracy: 0.8011
12/92 [==>………………………] - ETA: 4s - loss: 0.5063 - accuracy: 0.8047
13/92 [===>……………………..] - ETA: 4s - loss: 0.5257 - accuracy: 0.7981
14/92 [===>……………………..] - ETA: 4s - loss: 0.5310 - accuracy: 0.7969
15/92 [===>……………………..] - ETA: 4s - loss: 0.5420 - accuracy: 0.7875
16/92 [====>…………………….] - ETA: 4s - loss: 0.5323 - accuracy: 0.7910
17/92 [====>…………………….] - ETA: 4s - loss: 0.5475 - accuracy: 0.7831
18/92 [====>…………………….] - ETA: 4s - loss: 0.5417 - accuracy: 0.7830
19/92 [=====>……………………] - ETA: 4s - loss: 0.5430 - accuracy: 0.7829
20/92 [=====>……………………] - ETA: 4s - loss: 0.5497 - accuracy: 0.7766
21/92 [=====>……………………] - ETA: 4s - loss: 0.5450 - accuracy: 0.7783
22/92 [======>…………………..] - ETA: 4s - loss: 0.5501 - accuracy: 0.7784
23/92 [======>…………………..] - ETA: 3s - loss: 0.5590 - accuracy: 0.7799
24/92 [======>…………………..] - ETA: 3s - loss: 0.5482 - accuracy: 0.7865
25/92 [=======>………………….] - ETA: 3s - loss: 0.5465 - accuracy: 0.7875
26/92 [=======>………………….] - ETA: 3s - loss: 0.5421 - accuracy: 0.7885
27/92 [=======>………………….] - ETA: 3s - loss: 0.5454 - accuracy: 0.7882
28/92 [========>…………………] - ETA: 3s - loss: 0.5488 - accuracy: 0.7868
29/92 [========>…………………] - ETA: 3s - loss: 0.5551 - accuracy: 0.7812
30/92 [========>…………………] - ETA: 3s - loss: 0.5555 - accuracy: 0.7802
31/92 [=========>………………..] - ETA: 3s - loss: 0.5554 - accuracy: 0.7782
32/92 [=========>………………..] - ETA: 3s - loss: 0.5517 - accuracy: 0.7773
33/92 [=========>………………..] - ETA: 3s - loss: 0.5521 - accuracy: 0.7794
34/92 [==========>……………….] - ETA: 3s - loss: 0.5585 - accuracy: 0.7776
35/92 [==========>……………….] - ETA: 3s - loss: 0.5562 - accuracy: 0.7777
36/92 [==========>……………….] - ETA: 3s - loss: 0.5507 - accuracy: 0.7812
37/92 [===========>………………] - ETA: 3s - loss: 0.5586 - accuracy: 0.7779
38/92 [===========>………………] - ETA: 3s - loss: 0.5564 - accuracy: 0.7796
39/92 [===========>………………] - ETA: 3s - loss: 0.5534 - accuracy: 0.7812
40/92 [============>……………..] - ETA: 3s - loss: 0.5536 - accuracy: 0.7820
41/92 [============>……………..] - ETA: 2s - loss: 0.5572 - accuracy: 0.7805
42/92 [============>……………..] - ETA: 2s - loss: 0.5569 - accuracy: 0.7805
43/92 [=============>…………….] - ETA: 2s - loss: 0.5613 - accuracy: 0.7776
44/92 [=============>…………….] - ETA: 2s - loss: 0.5597 - accuracy: 0.7784
45/92 [=============>…………….] - ETA: 2s - loss: 0.5597 - accuracy: 0.7799
46/92 [==============>……………] - ETA: 2s - loss: 0.5566 - accuracy: 0.7812
47/92 [==============>……………] - ETA: 2s - loss: 0.5596 - accuracy: 0.7793
48/92 [==============>……………] - ETA: 2s - loss: 0.5574 - accuracy: 0.7806
49/92 [==============>……………] - ETA: 2s - loss: 0.5618 - accuracy: 0.7793
50/92 [===============>…………..] - ETA: 2s - loss: 0.5593 - accuracy: 0.7806
51/92 [===============>…………..] - ETA: 2s - loss: 0.5628 - accuracy: 0.7794
52/92 [===============>…………..] - ETA: 2s - loss: 0.5675 - accuracy: 0.7776
53/92 [================>………….] - ETA: 2s - loss: 0.5661 - accuracy: 0.7783
54/92 [================>………….] - ETA: 2s - loss: 0.5638 - accuracy: 0.7795
55/92 [================>………….] - ETA: 2s - loss: 0.5641 - accuracy: 0.7790
56/92 [=================>…………] - ETA: 2s - loss: 0.5638 - accuracy: 0.7785
57/92 [=================>…………] - ETA: 2s - loss: 0.5621 - accuracy: 0.7785
58/92 [=================>…………] - ETA: 1s - loss: 0.5647 - accuracy: 0.7775
59/92 [==================>………..] - ETA: 1s - loss: 0.5642 - accuracy: 0.7770
60/92 [==================>………..] - ETA: 1s - loss: 0.5652 - accuracy: 0.7760
61/92 [==================>………..] - ETA: 1s - loss: 0.5647 - accuracy: 0.7772
62/92 [===================>……….] - ETA: 1s - loss: 0.5618 - accuracy: 0.7792
63/92 [===================>……….] - ETA: 1s - loss: 0.5621 - accuracy: 0.7783
64/92 [===================>……….] - ETA: 1s - loss: 0.5602 - accuracy: 0.7788
65/92 [====================>………] - ETA: 1s - loss: 0.5594 - accuracy: 0.7793
66/92 [====================>………] - ETA: 1s - loss: 0.5603 - accuracy: 0.7784
67/92 [====================>………] - ETA: 1s - loss: 0.5598 - accuracy: 0.7789
68/92 [=====================>……..] - ETA: 1s - loss: 0.5633 - accuracy: 0.7776
69/92 [=====================>……..] - ETA: 1s - loss: 0.5660 - accuracy: 0.7767
70/92 [=====================>……..] - ETA: 1s - loss: 0.5666 - accuracy: 0.7763
71/92 [======================>…….] - ETA: 1s - loss: 0.5642 - accuracy: 0.7777
72/92 [======================>…….] - ETA: 1s - loss: 0.5633 - accuracy: 0.7778
73/92 [======================>…….] - ETA: 1s - loss: 0.5618 - accuracy: 0.7787
74/92 [=======================>……] - ETA: 1s - loss: 0.5634 - accuracy: 0.7779
75/92 [=======================>……] - ETA: 0s - loss: 0.5613 - accuracy: 0.7783
77/92 [========================>…..] - ETA: 0s - loss: 0.5630 - accuracy: 0.7769
78/92 [========================>…..] - ETA: 0s - loss: 0.5655 - accuracy: 0.7761
79/92 [========================>…..] - ETA: 0s - loss: 0.5639 - accuracy: 0.7770
80/92 [=========================>….] - ETA: 0s - loss: 0.5662 - accuracy: 0.7766
81/92 [=========================>….] - ETA: 0s - loss: 0.5626 - accuracy: 0.7783
82/92 [=========================>….] - ETA: 0s - loss: 0.5621 - accuracy: 0.7794
83/92 [==========================>…] - ETA: 0s - loss: 0.5608 - accuracy: 0.7806
84/92 [==========================>…] - ETA: 0s - loss: 0.5608 - accuracy: 0.7806
85/92 [==========================>…] - ETA: 0s - loss: 0.5613 - accuracy: 0.7802
86/92 [===========================>..] - ETA: 0s - loss: 0.5608 - accuracy: 0.7806
87/92 [===========================>..] - ETA: 0s - loss: 0.5642 - accuracy: 0.7803
88/92 [===========================>..] - ETA: 0s - loss: 0.5625 - accuracy: 0.7810
89/92 [============================>.] - ETA: 0s - loss: 0.5648 - accuracy: 0.7806
90/92 [============================>.] - ETA: 0s - loss: 0.5615 - accuracy: 0.7824
91/92 [============================>.] - ETA: 0s - loss: 0.5611 - accuracy: 0.7820
92/92 [==============================] - ETA: 0s - loss: 0.5609 - accuracy: 0.7827
92/92 [==============================] - 6s 64ms/step - loss: 0.5609 - accuracy: 0.7827 - val_loss: 0.6652 - val_accuracy: 0.7357
Epoch 13/15
1/92 [..............................] - ETA: 7s - loss: 0.5252 - accuracy: 0.8438
2/92 [..............................] - ETA: 5s - loss: 0.5595 - accuracy: 0.7969
3/92 [..............................] - ETA: 5s - loss: 0.5306 - accuracy: 0.8125
4/92 [>.............................] - ETA: 5s - loss: 0.5318 - accuracy: 0.8125
5/92 [>.............................] - ETA: 5s - loss: 0.4936 - accuracy: 0.8313
6/92 [>.............................] - ETA: 5s - loss: 0.4675 - accuracy: 0.8438
7/92 [=>............................] - ETA: 4s - loss: 0.4796 - accuracy: 0.8348
8/92 [=>............................] - ETA: 4s - loss: 0.5024 - accuracy: 0.8164
9/92 [=>............................] - ETA: 4s - loss: 0.4919 - accuracy: 0.8264
10/92 [==>………………………] - ETA: 4s - loss: 0.5071 - accuracy: 0.8219
11/92 [==>………………………] - ETA: 4s - loss: 0.5112 - accuracy: 0.8182
12/92 [==>………………………] - ETA: 4s - loss: 0.5037 - accuracy: 0.8203
13/92 [===>……………………..] - ETA: 4s - loss: 0.4893 - accuracy: 0.8245
14/92 [===>……………………..] - ETA: 4s - loss: 0.4904 - accuracy: 0.8281
15/92 [===>……………………..] - ETA: 4s - loss: 0.4893 - accuracy: 0.8271
16/92 [====>…………………….] - ETA: 4s - loss: 0.4908 - accuracy: 0.8242
17/92 [====>…………………….] - ETA: 4s - loss: 0.4963 - accuracy: 0.8180
18/92 [====>…………………….] - ETA: 4s - loss: 0.4981 - accuracy: 0.8177
19/92 [=====>……………………] - ETA: 4s - loss: 0.5066 - accuracy: 0.8141
20/92 [=====>……………………] - ETA: 4s - loss: 0.5055 - accuracy: 0.8125
21/92 [=====>……………………] - ETA: 4s - loss: 0.5156 - accuracy: 0.8065
22/92 [======>…………………..] - ETA: 4s - loss: 0.5282 - accuracy: 0.8054
23/92 [======>…………………..] - ETA: 3s - loss: 0.5264 - accuracy: 0.8084
24/92 [======>…………………..] - ETA: 3s - loss: 0.5195 - accuracy: 0.8099
25/92 [=======>………………….] - ETA: 3s - loss: 0.5105 - accuracy: 0.8138
26/92 [=======>………………….] - ETA: 3s - loss: 0.5050 - accuracy: 0.8149
27/92 [=======>………………….] - ETA: 3s - loss: 0.5063 - accuracy: 0.8171
28/92 [========>…………………] - ETA: 3s - loss: 0.5090 - accuracy: 0.8147
29/92 [========>…………………] - ETA: 3s - loss: 0.5016 - accuracy: 0.8179
30/92 [========>…………………] - ETA: 3s - loss: 0.4980 - accuracy: 0.8188
31/92 [=========>………………..] - ETA: 3s - loss: 0.5032 - accuracy: 0.8155
32/92 [=========>………………..] - ETA: 3s - loss: 0.4998 - accuracy: 0.8164
33/92 [=========>………………..] - ETA: 3s - loss: 0.4974 - accuracy: 0.8163
34/92 [==========>……………….] - ETA: 3s - loss: 0.5017 - accuracy: 0.8134
35/92 [==========>……………….] - ETA: 3s - loss: 0.5067 - accuracy: 0.8116
36/92 [==========>……………….] - ETA: 3s - loss: 0.5030 - accuracy: 0.8134
37/92 [===========>………………] - ETA: 3s - loss: 0.4970 - accuracy: 0.8159
38/92 [===========>………………] - ETA: 3s - loss: 0.4961 - accuracy: 0.8158
39/92 [===========>………………] - ETA: 3s - loss: 0.4938 - accuracy: 0.8165
40/92 [============>……………..] - ETA: 3s - loss: 0.4929 - accuracy: 0.8164
41/92 [============>……………..] - ETA: 2s - loss: 0.4964 - accuracy: 0.8171
42/92 [============>……………..] - ETA: 2s - loss: 0.4964 - accuracy: 0.8155
43/92 [=============>…………….] - ETA: 2s - loss: 0.4995 - accuracy: 0.8147
44/92 [=============>…………….] - ETA: 2s - loss: 0.5069 - accuracy: 0.8118
45/92 [=============>…………….] - ETA: 2s - loss: 0.5136 - accuracy: 0.8083
46/92 [==============>……………] - ETA: 2s - loss: 0.5124 - accuracy: 0.8084
47/92 [==============>……………] - ETA: 2s - loss: 0.5139 - accuracy: 0.8072
48/92 [==============>……………] - ETA: 2s - loss: 0.5154 - accuracy: 0.8073
49/92 [==============>……………] - ETA: 2s - loss: 0.5157 - accuracy: 0.8068
50/92 [===============>…………..] - ETA: 2s - loss: 0.5195 - accuracy: 0.8062
51/92 [===============>…………..] - ETA: 2s - loss: 0.5191 - accuracy: 0.8064
52/92 [===============>…………..] - ETA: 2s - loss: 0.5174 - accuracy: 0.8077
53/92 [================>………….] - ETA: 2s - loss: 0.5186 - accuracy: 0.8078
54/92 [================>………….] - ETA: 2s - loss: 0.5211 - accuracy: 0.8079
55/92 [================>………….] - ETA: 2s - loss: 0.5175 - accuracy: 0.8091
56/92 [=================>…………] - ETA: 2s - loss: 0.5185 - accuracy: 0.8092
57/92 [=================>…………] - ETA: 2s - loss: 0.5193 - accuracy: 0.8087
58/92 [=================>…………] - ETA: 1s - loss: 0.5222 - accuracy: 0.8071
59/92 [==================>………..] - ETA: 1s - loss: 0.5193 - accuracy: 0.8088
60/92 [==================>………..] - ETA: 1s - loss: 0.5179 - accuracy: 0.8094
61/92 [==================>………..] - ETA: 1s - loss: 0.5190 - accuracy: 0.8094
62/92 [===================>……….] - ETA: 1s - loss: 0.5203 - accuracy: 0.8095
63/92 [===================>……….] - ETA: 1s - loss: 0.5183 - accuracy: 0.8100
64/92 [===================>……….] - ETA: 1s - loss: 0.5221 - accuracy: 0.8091
65/92 [====================>………] - ETA: 1s - loss: 0.5257 - accuracy: 0.8077
66/92 [====================>………] - ETA: 1s - loss: 0.5256 - accuracy: 0.8078
67/92 [====================>………] - ETA: 1s - loss: 0.5246 - accuracy: 0.8083
68/92 [=====================>……..] - ETA: 1s - loss: 0.5257 - accuracy: 0.8065
69/92 [=====================>……..] - ETA: 1s - loss: 0.5277 - accuracy: 0.8057
70/92 [=====================>……..] - ETA: 1s - loss: 0.5288 - accuracy: 0.8049
71/92 [======================>…….] - ETA: 1s - loss: 0.5315 - accuracy: 0.8041
72/92 [======================>…….] - ETA: 1s - loss: 0.5324 - accuracy: 0.8030
73/92 [======================>…….] - ETA: 1s - loss: 0.5341 - accuracy: 0.8031
74/92 [=======================>……] - ETA: 1s - loss: 0.5340 - accuracy: 0.8032
75/92 [=======================>……] - ETA: 0s - loss: 0.5340 - accuracy: 0.8029
76/92 [=======================>……] - ETA: 0s - loss: 0.5359 - accuracy: 0.8014
77/92 [========================>…..] - ETA: 0s - loss: 0.5358 - accuracy: 0.8019
78/92 [========================>…..] - ETA: 0s - loss: 0.5377 - accuracy: 0.8021
79/92 [========================>…..] - ETA: 0s - loss: 0.5358 - accuracy: 0.8030
80/92 [=========================>….] - ETA: 0s - loss: 0.5352 - accuracy: 0.8035
81/92 [=========================>….] - ETA: 0s - loss: 0.5352 - accuracy: 0.8025
82/92 [=========================>….] - ETA: 0s - loss: 0.5368 - accuracy: 0.8018
83/92 [==========================>…] - ETA: 0s - loss: 0.5345 - accuracy: 0.8027
84/92 [==========================>…] - ETA: 0s - loss: 0.5322 - accuracy: 0.8036
86/92 [===========================>..] - ETA: 0s - loss: 0.5315 - accuracy: 0.8043
87/92 [===========================>..] - ETA: 0s - loss: 0.5294 - accuracy: 0.8044
88/92 [===========================>..] - ETA: 0s - loss: 0.5280 - accuracy: 0.8052
89/92 [============================>.] - ETA: 0s - loss: 0.5288 - accuracy: 0.8042
90/92 [============================>.] - ETA: 0s - loss: 0.5304 - accuracy: 0.8043
91/92 [============================>.] - ETA: 0s - loss: 0.5279 - accuracy: 0.8054
92/92 [==============================] - ETA: 0s - loss: 0.5255 - accuracy: 0.8072
92/92 [==============================] - 6s 64ms/step - loss: 0.5255 - accuracy: 0.8072 - val_loss: 0.7346 - val_accuracy: 0.7384
Epoch 14/15
1/92 [..............................] - ETA: 7s - loss: 0.3946 - accuracy: 0.8125
2/92 [..............................] - ETA: 5s - loss: 0.4186 - accuracy: 0.8438
3/92 [..............................] - ETA: 5s - loss: 0.5825 - accuracy: 0.7708
4/92 [>.............................] - ETA: 5s - loss: 0.5210 - accuracy: 0.8047
5/92 [>.............................] - ETA: 5s - loss: 0.5927 - accuracy: 0.7750
6/92 [>.............................] - ETA: 4s - loss: 0.5649 - accuracy: 0.7865
7/92 [=>............................] - ETA: 4s - loss: 0.5574 - accuracy: 0.7902
8/92 [=>............................] - ETA: 4s - loss: 0.5343 - accuracy: 0.7969
9/92 [=>............................] - ETA: 4s - loss: 0.5348 - accuracy: 0.7951
10/92 [==>………………………] - ETA: 4s - loss: 0.5328 - accuracy: 0.7937
11/92 [==>………………………] - ETA: 4s - loss: 0.5417 - accuracy: 0.7898
12/92 [==>………………………] - ETA: 4s - loss: 0.5423 - accuracy: 0.7839
13/92 [===>……………………..] - ETA: 4s - loss: 0.5293 - accuracy: 0.7957
14/92 [===>……………………..] - ETA: 4s - loss: 0.5237 - accuracy: 0.8013
15/92 [===>……………………..] - ETA: 4s - loss: 0.5192 - accuracy: 0.7958
16/92 [====>…………………….] - ETA: 4s - loss: 0.5227 - accuracy: 0.7969
17/92 [====>…………………….] - ETA: 4s - loss: 0.5219 - accuracy: 0.7996
18/92 [====>…………………….] - ETA: 4s - loss: 0.5389 - accuracy: 0.7951
20/92 [=====>……………………] - ETA: 4s - loss: 0.5362 - accuracy: 0.7927
21/92 [=====>……………………] - ETA: 4s - loss: 0.5310 - accuracy: 0.7937
22/92 [======>…………………..] - ETA: 4s - loss: 0.5365 - accuracy: 0.7945
23/92 [======>…………………..] - ETA: 3s - loss: 0.5421 - accuracy: 0.7940
24/92 [======>…………………..] - ETA: 3s - loss: 0.5364 - accuracy: 0.7947
25/92 [=======>………………….] - ETA: 3s - loss: 0.5400 - accuracy: 0.7942
26/92 [=======>………………….] - ETA: 3s - loss: 0.5380 - accuracy: 0.7949
27/92 [=======>………………….] - ETA: 3s - loss: 0.5330 - accuracy: 0.7967
28/92 [========>…………………] - ETA: 3s - loss: 0.5423 - accuracy: 0.7928
29/92 [========>…………………] - ETA: 3s - loss: 0.5431 - accuracy: 0.7935
30/92 [========>…………………] - ETA: 3s - loss: 0.5458 - accuracy: 0.7920
31/92 [=========>………………..] - ETA: 3s - loss: 0.5496 - accuracy: 0.7907
32/92 [=========>………………..] - ETA: 3s - loss: 0.5505 - accuracy: 0.7884
33/92 [=========>………………..] - ETA: 3s - loss: 0.5535 - accuracy: 0.7872
34/92 [==========>……………….] - ETA: 3s - loss: 0.5620 - accuracy: 0.7870
35/92 [==========>……………….] - ETA: 3s - loss: 0.5640 - accuracy: 0.7878
36/92 [==========>……………….] - ETA: 3s - loss: 0.5689 - accuracy: 0.7858
37/92 [===========>………………] - ETA: 3s - loss: 0.5683 - accuracy: 0.7849
38/92 [===========>………………] - ETA: 3s - loss: 0.5653 - accuracy: 0.7848
39/92 [===========>………………] - ETA: 3s - loss: 0.5606 - accuracy: 0.7863
40/92 [============>……………..] - ETA: 2s - loss: 0.5612 - accuracy: 0.7862
41/92 [============>……………..] - ETA: 2s - loss: 0.5642 - accuracy: 0.7860
42/92 [============>……………..] - ETA: 2s - loss: 0.5674 - accuracy: 0.7844
43/92 [=============>…………….] - ETA: 2s - loss: 0.5612 - accuracy: 0.7880
44/92 [=============>…………….] - ETA: 2s - loss: 0.5614 - accuracy: 0.7879
45/92 [=============>…………….] - ETA: 2s - loss: 0.5615 - accuracy: 0.7863
46/92 [==============>……………] - ETA: 2s - loss: 0.5615 - accuracy: 0.7855
47/92 [==============>……………] - ETA: 2s - loss: 0.5600 - accuracy: 0.7861
48/92 [==============>……………] - ETA: 2s - loss: 0.5585 - accuracy: 0.7880
49/92 [==============>……………] - ETA: 2s - loss: 0.5641 - accuracy: 0.7846
50/92 [===============>…………..] - ETA: 2s - loss: 0.5635 - accuracy: 0.7864
51/92 [===============>…………..] - ETA: 2s - loss: 0.5630 - accuracy: 0.7857
52/92 [===============>…………..] - ETA: 2s - loss: 0.5604 - accuracy: 0.7874
53/92 [================>………….] - ETA: 2s - loss: 0.5621 - accuracy: 0.7855
54/92 [================>………….] - ETA: 2s - loss: 0.5613 - accuracy: 0.7855
55/92 [================>………….] - ETA: 2s - loss: 0.5630 - accuracy: 0.7842
56/92 [=================>…………] - ETA: 2s - loss: 0.5613 - accuracy: 0.7853
57/92 [=================>…………] - ETA: 2s - loss: 0.5607 - accuracy: 0.7858
58/92 [=================>…………] - ETA: 1s - loss: 0.5580 - accuracy: 0.7873
59/92 [==================>………..] - ETA: 1s - loss: 0.5560 - accuracy: 0.7872
60/92 [==================>………..] - ETA: 1s - loss: 0.5529 - accuracy: 0.7887
61/92 [==================>………..] - ETA: 1s - loss: 0.5507 - accuracy: 0.7896
62/92 [===================>……….] - ETA: 1s - loss: 0.5497 - accuracy: 0.7900
63/92 [===================>……….] - ETA: 1s - loss: 0.5490 - accuracy: 0.7903
64/92 [===================>……….] - ETA: 1s - loss: 0.5505 - accuracy: 0.7887
65/92 [====================>………] - ETA: 1s - loss: 0.5467 - accuracy: 0.7901
66/92 [====================>………] - ETA: 1s - loss: 0.5484 - accuracy: 0.7899
67/92 [====================>………] - ETA: 1s - loss: 0.5478 - accuracy: 0.7903
68/92 [=====================>……..] - ETA: 1s - loss: 0.5458 - accuracy: 0.7911
69/92 [=====================>……..] - ETA: 1s - loss: 0.5454 - accuracy: 0.7914
70/92 [=====================>……..] - ETA: 1s - loss: 0.5482 - accuracy: 0.7899
71/92 [======================>…….] - ETA: 1s - loss: 0.5472 - accuracy: 0.7902
72/92 [======================>…….] - ETA: 1s - loss: 0.5475 - accuracy: 0.7888
73/92 [======================>…….] - ETA: 1s - loss: 0.5450 - accuracy: 0.7904
74/92 [=======================>……] - ETA: 1s - loss: 0.5426 - accuracy: 0.7911
75/92 [=======================>……] - ETA: 0s - loss: 0.5456 - accuracy: 0.7901
76/92 [=======================>……] - ETA: 0s - loss: 0.5460 - accuracy: 0.7892
77/92 [========================>…..] - ETA: 0s - loss: 0.5432 - accuracy: 0.7911
78/92 [========================>…..] - ETA: 0s - loss: 0.5412 - accuracy: 0.7914
79/92 [========================>…..] - ETA: 0s - loss: 0.5420 - accuracy: 0.7909
80/92 [=========================>….] - ETA: 0s - loss: 0.5455 - accuracy: 0.7888
81/92 [=========================>….] - ETA: 0s - loss: 0.5470 - accuracy: 0.7891
82/92 [=========================>….] - ETA: 0s - loss: 0.5454 - accuracy: 0.7898
83/92 [==========================>…] - ETA: 0s - loss: 0.5431 - accuracy: 0.7908
84/92 [==========================>…] - ETA: 0s - loss: 0.5453 - accuracy: 0.7907
85/92 [==========================>…] - ETA: 0s - loss: 0.5463 - accuracy: 0.7906
86/92 [===========================>..] - ETA: 0s - loss: 0.5460 - accuracy: 0.7905
87/92 [===========================>..] - ETA: 0s - loss: 0.5441 - accuracy: 0.7903
88/92 [===========================>..] - ETA: 0s - loss: 0.5444 - accuracy: 0.7899
89/92 [============================>.] - ETA: 0s - loss: 0.5429 - accuracy: 0.7901
90/92 [============================>.] - ETA: 0s - loss: 0.5423 - accuracy: 0.7904
91/92 [============================>.] - ETA: 0s - loss: 0.5448 - accuracy: 0.7893
92/92 [==============================] - ETA: 0s - loss: 0.5438 - accuracy: 0.7895
92/92 [==============================] - 6s 64ms/step - loss: 0.5438 - accuracy: 0.7895 - val_loss: 0.7761 - val_accuracy: 0.7275
Epoch 15/15
1/92 [..............................] - ETA: 7s - loss: 0.5374 - accuracy: 0.8750
2/92 [..............................] - ETA: 5s - loss: 0.4638 - accuracy: 0.8906
3/92 [..............................] - ETA: 5s - loss: 0.4361 - accuracy: 0.8750
4/92 [>.............................] - ETA: 5s - loss: 0.4714 - accuracy: 0.8281
5/92 [>.............................] - ETA: 4s - loss: 0.4472 - accuracy: 0.8375
6/92 [>.............................] - ETA: 4s - loss: 0.4562 - accuracy: 0.8281
7/92 [=>............................] - ETA: 4s - loss: 0.4228 - accuracy: 0.8438
8/92 [=>............................] - ETA: 4s - loss: 0.4377 - accuracy: 0.8359
9/92 [=>............................] - ETA: 4s - loss: 0.4744 - accuracy: 0.8264
10/92 [==>………………………] - ETA: 4s - loss: 0.4706 - accuracy: 0.8313
11/92 [==>………………………] - ETA: 4s - loss: 0.4714 - accuracy: 0.8324
12/92 [==>………………………] - ETA: 4s - loss: 0.4935 - accuracy: 0.8255
13/92 [===>……………………..] - ETA: 4s - loss: 0.4925 - accuracy: 0.8245
14/92 [===>……………………..] - ETA: 4s - loss: 0.4784 - accuracy: 0.8281
15/92 [===>……………………..] - ETA: 4s - loss: 0.4763 - accuracy: 0.8271
16/92 [====>…………………….] - ETA: 4s - loss: 0.4744 - accuracy: 0.8301
17/92 [====>…………………….] - ETA: 4s - loss: 0.4797 - accuracy: 0.8254
18/92 [====>…………………….] - ETA: 4s - loss: 0.4824 - accuracy: 0.8264
19/92 [=====>……………………] - ETA: 4s - loss: 0.4777 - accuracy: 0.8273
20/92 [=====>……………………] - ETA: 4s - loss: 0.4756 - accuracy: 0.8297
21/92 [=====>……………………] - ETA: 4s - loss: 0.4717 - accuracy: 0.8304
22/92 [======>…………………..] - ETA: 4s - loss: 0.4740 - accuracy: 0.8281
23/92 [======>…………………..] - ETA: 3s - loss: 0.4742 - accuracy: 0.8261
24/92 [======>…………………..] - ETA: 3s - loss: 0.4757 - accuracy: 0.8229
25/92 [=======>………………….] - ETA: 3s - loss: 0.4786 - accuracy: 0.8213
26/92 [=======>………………….] - ETA: 3s - loss: 0.4786 - accuracy: 0.8209
27/92 [=======>………………….] - ETA: 3s - loss: 0.4836 - accuracy: 0.8183
28/92 [========>…………………] - ETA: 3s - loss: 0.4816 - accuracy: 0.8181
29/92 [========>…………………] - ETA: 3s - loss: 0.4780 - accuracy: 0.8190
30/92 [========>…………………] - ETA: 3s - loss: 0.4789 - accuracy: 0.8177
31/92 [=========>………………..] - ETA: 3s - loss: 0.4751 - accuracy: 0.8175
32/92 [=========>………………..] - ETA: 3s - loss: 0.4703 - accuracy: 0.8184
33/92 [=========>………………..] - ETA: 3s - loss: 0.4701 - accuracy: 0.8191
34/92 [==========>……………….] - ETA: 3s - loss: 0.4664 - accuracy: 0.8199
35/92 [==========>……………….] - ETA: 3s - loss: 0.4676 - accuracy: 0.8196
36/92 [==========>……………….] - ETA: 3s - loss: 0.4686 - accuracy: 0.8203
37/92 [===========>………………] - ETA: 3s - loss: 0.4684 - accuracy: 0.8209
38/92 [===========>………………] - ETA: 3s - loss: 0.4648 - accuracy: 0.8199
39/92 [===========>………………] - ETA: 3s - loss: 0.4673 - accuracy: 0.8181
40/92 [============>……………..] - ETA: 2s - loss: 0.4649 - accuracy: 0.8188
41/92 [============>……………..] - ETA: 2s - loss: 0.4656 - accuracy: 0.8186
42/92 [============>……………..] - ETA: 2s - loss: 0.4694 - accuracy: 0.8177
43/92 [=============>…………….] - ETA: 2s - loss: 0.4750 - accuracy: 0.8154
44/92 [=============>…………….] - ETA: 2s - loss: 0.4788 - accuracy: 0.8118
45/92 [=============>…………….] - ETA: 2s - loss: 0.4772 - accuracy: 0.8132
46/92 [==============>……………] - ETA: 2s - loss: 0.4774 - accuracy: 0.8132
47/92 [==============>……………] - ETA: 2s - loss: 0.4781 - accuracy: 0.8145
48/92 [==============>……………] - ETA: 2s - loss: 0.4757 - accuracy: 0.8158
49/92 [==============>……………] - ETA: 2s - loss: 0.4758 - accuracy: 0.8157
50/92 [===============>…………..] - ETA: 2s - loss: 0.4741 - accuracy: 0.8169
51/92 [===============>…………..] - ETA: 2s - loss: 0.4775 - accuracy: 0.8168
52/92 [===============>…………..] - ETA: 2s - loss: 0.4794 - accuracy: 0.8149
53/92 [================>………….] - ETA: 2s - loss: 0.4896 - accuracy: 0.8125
54/92 [================>………….] - ETA: 2s - loss: 0.4885 - accuracy: 0.8137
55/92 [================>………….] - ETA: 2s - loss: 0.4864 - accuracy: 0.8136
56/92 [=================>…………] - ETA: 2s - loss: 0.4861 - accuracy: 0.8136
57/92 [=================>…………] - ETA: 2s - loss: 0.4869 - accuracy: 0.8130
58/92 [=================>…………] - ETA: 1s - loss: 0.4843 - accuracy: 0.8141
59/92 [==================>………..] - ETA: 1s - loss: 0.4882 - accuracy: 0.8130
60/92 [==================>………..] - ETA: 1s - loss: 0.4926 - accuracy: 0.8109
61/92 [==================>………..] - ETA: 1s - loss: 0.4920 - accuracy: 0.8115
62/92 [===================>……….] - ETA: 1s - loss: 0.4945 - accuracy: 0.8095
63/92 [===================>……….] - ETA: 1s - loss: 0.4951 - accuracy: 0.8095
64/92 [===================>……….] - ETA: 1s - loss: 0.4949 - accuracy: 0.8101
65/92 [====================>………] - ETA: 1s - loss: 0.4933 - accuracy: 0.8096
66/92 [====================>………] - ETA: 1s - loss: 0.4981 - accuracy: 0.8073
67/92 [====================>………] - ETA: 1s - loss: 0.4964 - accuracy: 0.8083
68/92 [=====================>……..] - ETA: 1s - loss: 0.4934 - accuracy: 0.8093
69/92 [=====================>……..] - ETA: 1s - loss: 0.4972 - accuracy: 0.8093
70/92 [=====================>……..] - ETA: 1s - loss: 0.4996 - accuracy: 0.8080
71/92 [======================>…….] - ETA: 1s - loss: 0.5009 - accuracy: 0.8072
72/92 [======================>…….] - ETA: 1s - loss: 0.5067 - accuracy: 0.8064
73/92 [======================>…….] - ETA: 1s - loss: 0.5055 - accuracy: 0.8061
74/92 [=======================>……] - ETA: 1s - loss: 0.5039 - accuracy: 0.8066
75/92 [=======================>……] - ETA: 0s - loss: 0.5070 - accuracy: 0.8046
76/92 [=======================>……] - ETA: 0s - loss: 0.5080 - accuracy: 0.8047
77/92 [========================>…..] - ETA: 0s - loss: 0.5113 - accuracy: 0.8040
78/92 [========================>…..] - ETA: 0s - loss: 0.5107 - accuracy: 0.8045
79/92 [========================>…..] - ETA: 0s - loss: 0.5141 - accuracy: 0.8026
80/92 [=========================>….] - ETA: 0s - loss: 0.5121 - accuracy: 0.8035
81/92 [=========================>….] - ETA: 0s - loss: 0.5107 - accuracy: 0.8044
82/92 [=========================>….] - ETA: 0s - loss: 0.5102 - accuracy: 0.8041
83/92 [==========================>…] - ETA: 0s - loss: 0.5116 - accuracy: 0.8035
84/92 [==========================>…] - ETA: 0s - loss: 0.5117 - accuracy: 0.8032
85/92 [==========================>…] - ETA: 0s - loss: 0.5099 - accuracy: 0.8037
86/92 [===========================>..] - ETA: 0s - loss: 0.5129 - accuracy: 0.8016
87/92 [===========================>..] - ETA: 0s - loss: 0.5155 - accuracy: 0.8006
89/92 [============================>.] - ETA: 0s - loss: 0.5151 - accuracy: 0.8011
90/92 [============================>.] - ETA: 0s - loss: 0.5154 - accuracy: 0.8012
91/92 [============================>.] - ETA: 0s - loss: 0.5143 - accuracy: 0.8017
92/92 [==============================] - ETA: 0s - loss: 0.5165 - accuracy: 0.8004
92/92 [==============================] - 6s 64ms/step - loss: 0.5165 - accuracy: 0.8004 - val_loss: 0.7822 - val_accuracy: 0.7289
1/1 [==============================] - ETA: 0s
1/1 [==============================] - 0s 74ms/step
This image most likely belongs to sunflowers with a 99.24 percent confidence.
2024-02-10 01:10:41.607321: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'random_flip_input' with dtype float and shape [?,180,180,3]
[[{{node random_flip_input}}]]
2024-02-10 01:10:41.692936: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'inputs' with dtype float and shape [?,180,180,3]
[[{{node inputs}}]]
2024-02-10 01:10:41.703478: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'random_flip_input' with dtype float and shape [?,180,180,3]
[[{{node random_flip_input}}]]
2024-02-10 01:10:41.714441: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'inputs' with dtype float and shape [?,180,180,3]
[[{{node inputs}}]]
2024-02-10 01:10:41.722136: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'inputs' with dtype float and shape [?,180,180,3]
[[{{node inputs}}]]
2024-02-10 01:10:41.728943: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'inputs' with dtype float and shape [?,180,180,3]
[[{{node inputs}}]]
2024-02-10 01:10:41.739850: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'inputs' with dtype float and shape [?,180,180,3]
[[{{node inputs}}]]
2024-02-10 01:10:41.778944: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'sequential_1_input' with dtype float and shape [?,180,180,3]
[[{{node sequential_1_input}}]]
2024-02-10 01:10:41.847949: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'inputs' with dtype float and shape [?,180,180,3]
[[{{node inputs}}]]
2024-02-10 01:10:41.868730: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'sequential_1_input' with dtype float and shape [?,180,180,3]
[[{{node sequential_1_input}}]]
2024-02-10 01:10:41.907533: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'inputs' with dtype float and shape [?,22,22,64]
[[{{node inputs}}]]
2024-02-10 01:10:41.933427: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'inputs' with dtype float and shape [?,180,180,3]
[[{{node inputs}}]]
2024-02-10 01:10:42.007195: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'inputs' with dtype float and shape [?,180,180,3]
[[{{node inputs}}]]
2024-02-10 01:10:42.149634: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'inputs' with dtype float and shape [?,180,180,3]
[[{{node inputs}}]]
2024-02-10 01:10:42.286901: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'inputs' with dtype float and shape [?,22,22,64]
[[{{node inputs}}]]
2024-02-10 01:10:42.489392: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'inputs' with dtype float and shape [?,180,180,3]
[[{{node inputs}}]]
2024-02-10 01:10:42.517820: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'inputs' with dtype float and shape [?,180,180,3]
[[{{node inputs}}]]
2024-02-10 01:10:42.563861: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'inputs' with dtype float and shape [?,180,180,3]
[[{{node inputs}}]]
WARNING:absl:Found untraced functions such as _jit_compiled_convolution_op, _jit_compiled_convolution_op, _jit_compiled_convolution_op, _update_step_xla while saving (showing 4 of 4). These functions will not be directly callable after loading.
INFO:tensorflow:Assets written to: model/flower/saved_model/assets
INFO:tensorflow:Assets written to: model/flower/saved_model/assets
output/A_Close_Up_Photo_of_a_Dandelion.jpg: 0%| | 0.00/21.7k [00:00<?, ?B/s]
(1, 180, 180, 3)
[1,180,180,3]
This image most likely belongs to dandelion with a 97.96 percent confidence.
インポート¶
トレーニング後の量子化 API は nncf
ライブラリーに実装されています。
import sys
import matplotlib.pyplot as plt
import numpy as np
import nncf
from openvino.runtime import Core
from openvino.runtime import serialize
from PIL import Image
from sklearn.metrics import accuracy_score
sys.path.append("../utils")
from notebook_utils import download_file
INFO:nncf:NNCF initialized successfully. Supported frameworks detected: torch, tensorflow, onnx, openvino
NNCF によるトレーニング後の量子化¶
NNCF は、精度の低下を最小限に抑えながら、OpenVINO でニューラル・ネットワーク推論を最適化する一連の高度なアルゴリズムを提供します。
事前トレーニングされた FP32 モデルとキャリブレーション・データセットから量子化モデルを作成します。最適化プロセスには次の手順が含まれます。
量子化用のデータセットを作成します。
最適化されたモデルを取得するには、nncf.quantize を実行します。
検証データセットはトレーニング・ノートブックですでに定義されています。
img_height = 180
img_width = 180
val_dataset = tf.keras.preprocessing.image_dataset_from_directory(
data_dir,
validation_split=0.2,
subset="validation",
seed=123,
image_size=(img_height, img_width),
batch_size=1
)
for a, b in val_dataset:
print(type(a), type(b))
break
Found 3670 files belonging to 5 classes.
Using 734 files for validation.
<class 'tensorflow.python.framework.ops.EagerTensor'> <class 'tensorflow.python.framework.ops.EagerTensor'>
2024-02-10 01:10:45.668839: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_0' with dtype string and shape [734]
[[{{node Placeholder/_0}}]]
2024-02-10 01:10:45.669302: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_0' with dtype string and shape [734]
[[{{node Placeholder/_0}}]]
また、検証データセットは量子化プロセスで再利用できます。ただし、calibration_dataset は画像のみを返すのに対し、ここではタプル (画像、ラベル) を返します。変換関数は、ユーザー検証データセットをキャリブレーション・データセットに変換するのに役立ちます。
def transform_fn(data_item):
"""
The transformation function transforms a data item into model input data.
This function should be passed when the data item cannot be used as model's input.
"""
images, _ = data_item
return images.numpy()
calibration_dataset = nncf.Dataset(val_dataset, transform_fn)
中間表現 (IR) モデルをダウンロードします。
core = Core()
ir_model = core.read_model(model_xml)
基本的な量子化フローを使用します。精度制御を備えたモデルに 8 ビットの量子化を適用する最も高度な量子化フローを使用するには、精度制御による量子化を参照してください。
quantized_model = nncf.quantize(
ir_model,
calibration_dataset,
subset_size=1000
)
Output()
Exception in thread Thread-88:
Traceback (most recent call last):
File "/usr/lib/python3.8/threading.py", line 932, in _bootstrap_inner
self.run()
File "/opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-609/.workspace/scm/ov-notebook/.venv/lib/python3.8/si te-packages/rich/live.py", line 32, in run
self.live.refresh()
File "/opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-609/.workspace/scm/ov-notebook/.venv/lib/python3.8/si te-packages/rich/live.py", line 223, in refresh
self._live_render.set_renderable(self.renderable)
File "/opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-609/.workspace/scm/ov-notebook/.venv/lib/python3.8/si te-packages/rich/live.py", line 203, in renderable
renderable = self.get_renderable()
File "/opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-609/.workspace/scm/ov-notebook/.venv/lib/python3.8/si te-packages/rich/live.py", line 98, in get_renderable
self._get_renderable()
File "/opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-609/.workspace/scm/ov-notebook/.venv/lib/python3.8/si te-packages/rich/progress.py", line 1537, in get_renderable
renderable = Group(*self.get_renderables())
File "/opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-609/.workspace/scm/ov-notebook/.venv/lib/python3.8/si te-packages/rich/progress.py", line 1542, in get_renderables
table = self.make_tasks_table(self.tasks)
File "/opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-609/.workspace/scm/ov-notebook/.venv/lib/python3.8/si te-packages/rich/progress.py", line 1566, in make_tasks_table
table.add_row(
File "/opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-609/.workspace/scm/ov-notebook/.venv/lib/python3.8/si te-packages/rich/progress.py", line 1571, in <genexpr>
else column(task)
File "/opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-609/.workspace/scm/ov-notebook/.venv/lib/python3.8/si te-packages/rich/progress.py", line 528, in __call__
renderable = self.render(task)
File "/opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-609/.workspace/scm/ov-notebook/.venv/lib/python3.8/si te-packages/nncf/common/logging/track_progress.py", line 58, in render
text = super().render(task)
File "/opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-609/.workspace/scm/ov-notebook/.venv/lib/python3.8/si te-packages/rich/progress.py", line 787, in render
task_time = task.time_remaining
File "/opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-609/.workspace/scm/ov-notebook/.venv/lib/python3.8/si te-packages/rich/progress.py", line 1039, in time_remaining
estimate = ceil(remaining / speed)
File "/opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-609/.workspace/scm/ov-notebook/.venv/lib/python3.8/si te-packages/tensorflow/python/util/traceback_utils.py", line 153, in error_handler
raise e.with_traceback(filtered_tb) from None
File "/opt/home/k8sworker/ci-ai/cibuilds/ov-notebook/OVNotebookOps-609/.workspace/scm/ov-notebook/.venv/lib/python3.8/si te-packages/tensorflow/python/ops/math_ops.py", line 1569, in _truediv_python3
raise TypeError(f"`x` and `y` must have the same dtype, "
TypeError: `x` and `y` must have the same dtype, got tf.int64 != tf.float32.
Output()
量子化されたモデルをベンチマークに保存します。
compressed_model_dir = Path("model/optimized")
compressed_model_dir.mkdir(parents=True, exist_ok=True)
compressed_model_xml = compressed_model_dir / "flower_ir.xml"
serialize(quantized_model, str(compressed_model_xml))
推論デバイスの選択¶
OpenVINO を使用して推論を実行するためにドロップダウン・リストからデバイスを選択します。
import ipywidgets as widgets
device = widgets.Dropdown(
options=core.available_devices + ["AUTO"],
value='AUTO',
description='Device:',
disabled=False,
)
device
Dropdown(description='Device:', index=1, options=('CPU', 'AUTO'), value='AUTO')
メトリックを比較¶
モデルのパフォーマンスを判断するメトリックを定義します。
このデモでは、精度メトリックを計算する検証関数を定義します。
def validate(model, validation_loader):
"""
Evaluate model and compute accuracy metrics.
:param model: Model to validate
:param validation_loader: Validation dataset
:returns: Accuracy scores
"""
predictions = []
references = []
output = model.outputs[0]
for images, target in validation_loader:
pred = model(images.numpy())[output]
predictions.append(np.argmax(pred, axis=1))
references.append(target)
predictions = np.concatenate(predictions, axis=0)
references = np.concatenate(references, axis=0)
scores = accuracy_score(references, predictions)
return scores
元のモデルと量子化されたモデルの精度を計算します。
original_compiled_model = core.compile_model(model=ir_model, device_name=device.value)
quantized_compiled_model = core.compile_model(model=quantized_model, device_name=device.value)
original_accuracy = validate(original_compiled_model, val_dataset)
quantized_accuracy = validate(quantized_compiled_model, val_dataset)
print(f"Accuracy of the original model: {original_accuracy:.3f}")
print(f"Accuracy of the quantized model: {quantized_accuracy:.3f}")
Accuracy of the original model: 0.729
Accuracy of the quantized model: 0.729
モデルのファイルサイズを比較します。
original_model_size = model_xml.with_suffix(".bin").stat().st_size / 1024
quantized_model_size = compressed_model_xml.with_suffix(".bin").stat().st_size / 1024
print(f"Original model size: {original_model_size:.2f} KB")
print(f"Quantized model size: {quantized_model_size:.2f} KB")
Original model size: 7791.65 KB
Quantized model size: 3897.08 KB
したがって、元のモデルと量子化されたモデルでは、量子化されたモデルのサイズがはるかに小さいにもかかわらず、同様の精度を持っていることが分かります。
量子化モデルで推論を実行¶
トレーニング・ノートブックから前処理関数をコピーし、OpenVINO を使用して量子化モデルで推論を実行します。OpenVINO Python API を使用した推論の実行の詳細については、OpenVINO API チュートリアルを参照してください。
def pre_process_image(imagePath, img_height=180):
# Model input format
n, c, h, w = [1, 3, img_height, img_height]
image = Image.open(imagePath)
image = image.resize((h, w), resample=Image.BILINEAR)
# Convert to array and change data layout from HWC to CHW
image = np.array(image)
input_image = image.reshape((n, h, w, c))
return input_image
# Get the names of the input and output layer
# model_pot = ie.read_model(model="model/optimized/flower_ir.xml")
input_layer = quantized_compiled_model.input(0)
output_layer = quantized_compiled_model.output(0)
# Get the class names: a list of directory names in alphabetical order
class_names = sorted([item.name for item in Path(data_dir).iterdir() if item.is_dir()])
# Run inference on an input image...
inp_img_url = (
"https://upload.wikimedia.org/wikipedia/commons/4/48/A_Close_Up_Photo_of_a_Dandelion.jpg"
)
directory = "output"
inp_file_name = "A_Close_Up_Photo_of_a_Dandelion.jpg"
file_path = Path(directory)/Path(inp_file_name)
# Download the image if it does not exist yet
if not Path(inp_file_name).exists():
download_file(inp_img_url, inp_file_name, directory=directory)
# Pre-process the image and get it ready for inference.
input_image = pre_process_image(imagePath=file_path)
print(f'input image shape: {input_image.shape}')
print(f'input layer shape: {input_layer.shape}')
res = quantized_compiled_model([input_image])[output_layer]
score = tf.nn.softmax(res[0])
# Show the results
image = Image.open(file_path)
plt.imshow(image)
print(
"This image most likely belongs to {} with a {:.2f} percent confidence.".format(
class_names[np.argmax(score)], 100 * np.max(score)
)
)
'output/A_Close_Up_Photo_of_a_Dandelion.jpg' already exists.
input image shape: (1, 180, 180, 3)
input layer shape: [1,180,180,3]
This image most likely belongs to dandelion with a 98.03 percent confidence.
推論速度の比較¶
OpenVINO ベンチマーク・アプリで推論速度を測定します。
ベンチマーク・アプリは、指定された OpenVINO IR モデルの生の推論パフォーマンスを測定するコマンドライン・ツールです。使用可能なパラメーターのリストを表示するには、benchmark_app --help
を実行します。デフォルトでは、ベンチマーク・アプリは、CPU 上で非同期推論を使用して、-m
パラメーターで指定されたモデルのパフォーマンスを 1 分間テストします。-d
パラメーターを使用して、インテル® 統合グラフィックス (iGPU) などのデバイスでパフォーマンスをテストし、-t
を使用して推論を実行する秒数を設定します。詳細についてはドキュメントを参照してください。
このチュートリアルでは、ノートブック・ユーティリティーのラッパー関数を使用します。選択したパラメーターを使用して benchmark_app
コマンドを出力します。
次のセルでは、CPU 上で元のモデルと量子化されたモデルの推論速度を測定します。iGPU が利用可能な場合、CPU + GPU の推論速度も測定されます。秒数は 15 に設定されています。
注: 最も正確なパフォーマンス推定を行うには、他のアプリケーションを閉じた後、ターミナル/コマンドプロンプトで
benchmark_app
を実行することを推奨します。
# print the available devices on this system
print("Device information:")
print(core.get_property("CPU", "FULL_DEVICE_NAME"))
if "GPU" in core.available_devices:
print(core.get_property("GPU", "FULL_DEVICE_NAME"))
Device information:
Intel(R) Core(TM) i9-10920X CPU @ 3.50GHz
# Original model - CPU
! benchmark_app -m $model_xml -d CPU -t 15 -api async
[Step 1/11] Parsing and validating input arguments
[ INFO ] Parsing input parameters
[Step 2/11] Loading OpenVINO Runtime
[ INFO ] OpenVINO:
[ INFO ] Build ................................. 2023.3.0-13775-ceeafaf64f3-releases/2023/3
[ INFO ]
[ INFO ] Device info:
[ INFO ] CPU
[ INFO ] Build ................................. 2023.3.0-13775-ceeafaf64f3-releases/2023/3
[ INFO ]
[ INFO ]
[Step 3/11] Setting device configuration
[ WARNING ] Performance hint was not explicitly specified in command line. Device(CPU) performance hint will be set to PerformanceMode.THROUGHPUT.
[Step 4/11] Reading model files
[ INFO ] Loading model files
[ INFO ] Read model took 12.98 ms
[ INFO ] Original model I/O parameters:
[ INFO ] Model inputs:
[ INFO ] sequential_1_input (node: sequential_1_input) : f32 / [...] / [1,180,180,3]
[ INFO ] Model outputs:
[ INFO ] outputs (node: sequential_2/outputs/BiasAdd) : f32 / [...] / [1,5]
[Step 5/11] Resizing model to match image sizes and given batch
[ INFO ] Model batch size: 1
[Step 6/11] Configuring input of the model
[ INFO ] Model inputs:
[ INFO ] sequential_1_input (node: sequential_1_input) : u8 / [N,H,W,C] / [1,180,180,3]
[ INFO ] Model outputs:
[ INFO ] outputs (node: sequential_2/outputs/BiasAdd) : f32 / [...] / [1,5]
[Step 7/11] Loading the model to the device
[ INFO ] Compile model took 71.95 ms
[Step 8/11] Querying optimal runtime parameters
[ INFO ] Model:
[ INFO ] NETWORK_NAME: TensorFlow_Frontend_IR
[ INFO ] OPTIMAL_NUMBER_OF_INFER_REQUESTS: 12
[ INFO ] NUM_STREAMS: 12
[ INFO ] AFFINITY: Affinity.CORE
[ INFO ] INFERENCE_NUM_THREADS: 24
[ INFO ] PERF_COUNT: NO
[ INFO ] INFERENCE_PRECISION_HINT: <Type: 'float32'>
[ INFO ] PERFORMANCE_HINT: THROUGHPUT
[ INFO ] EXECUTION_MODE_HINT: ExecutionMode.PERFORMANCE
[ INFO ] PERFORMANCE_HINT_NUM_REQUESTS: 0
[ INFO ] ENABLE_CPU_PINNING: True
[ INFO ] SCHEDULING_CORE_TYPE: SchedulingCoreType.ANY_CORE
[ INFO ] ENABLE_HYPER_THREADING: True
[ INFO ] EXECUTION_DEVICES: ['CPU']
[ INFO ] CPU_DENORMALS_OPTIMIZATION: False
[ INFO ] CPU_SPARSE_WEIGHTS_DECOMPRESSION_RATE: 1.0
[Step 9/11] Creating infer requests and preparing input tensors
[ WARNING ] No input files were given for input 'sequential_1_input'!. This input will be filled with random values!
[ INFO ] Fill input 'sequential_1_input' with random values
[Step 10/11] Measuring performance (Start inference asynchronously, 12 inference requests, limits: 15000 ms duration)
[ INFO ] Benchmarking in inference only mode (inputs filling are not included in measurement loop).
[ INFO ] First inference took 7.48 ms
[Step 11/11] Dumping statistics report
[ INFO ] Execution Devices:['CPU']
[ INFO ] Count: 57660 iterations
[ INFO ] Duration: 15004.59 ms
[ INFO ] Latency:
[ INFO ] Median: 2.95 ms
[ INFO ] Average: 2.95 ms
[ INFO ] Min: 1.69 ms
[ INFO ] Max: 12.80 ms
[ INFO ] Throughput: 3842.82 FPS
# Quantized model - CPU
! benchmark_app -m $compressed_model_xml -d CPU -t 15 -api async
[Step 1/11] Parsing and validating input arguments
[ INFO ] Parsing input parameters
[Step 2/11] Loading OpenVINO Runtime
[ INFO ] OpenVINO:
[ INFO ] Build ................................. 2023.3.0-13775-ceeafaf64f3-releases/2023/3
[ INFO ]
[ INFO ] Device info:
[ INFO ] CPU
[ INFO ] Build ................................. 2023.3.0-13775-ceeafaf64f3-releases/2023/3
[ INFO ]
[ INFO ]
[Step 3/11] Setting device configuration
[ WARNING ] Performance hint was not explicitly specified in command line. Device(CPU) performance hint will be set to PerformanceMode.THROUGHPUT.
[Step 4/11] Reading model files
[ INFO ] Loading model files
[ INFO ] Read model took 15.15 ms
[ INFO ] Original model I/O parameters:
[ INFO ] Model inputs:
[ INFO ] sequential_1_input (node: sequential_1_input) : f32 / [...] / [1,180,180,3]
[ INFO ] Model outputs:
[ INFO ] outputs (node: sequential_2/outputs/BiasAdd) : f32 / [...] / [1,5]
[Step 5/11] Resizing model to match image sizes and given batch
[ INFO ] Model batch size: 1
[Step 6/11] Configuring input of the model
[ INFO ] Model inputs:
[ INFO ] sequential_1_input (node: sequential_1_input) : u8 / [N,H,W,C] / [1,180,180,3]
[ INFO ] Model outputs:
[ INFO ] outputs (node: sequential_2/outputs/BiasAdd) : f32 / [...] / [1,5]
[Step 7/11] Loading the model to the device
[ INFO ] Compile model took 67.57 ms
[Step 8/11] Querying optimal runtime parameters
[ INFO ] Model:
[ INFO ] NETWORK_NAME: TensorFlow_Frontend_IR
[ INFO ] OPTIMAL_NUMBER_OF_INFER_REQUESTS: 12
[ INFO ] NUM_STREAMS: 12
[ INFO ] AFFINITY: Affinity.CORE
[ INFO ] INFERENCE_NUM_THREADS: 24
[ INFO ] PERF_COUNT: NO
[ INFO ] INFERENCE_PRECISION_HINT: <Type: 'float32'>
[ INFO ] PERFORMANCE_HINT: THROUGHPUT
[ INFO ] EXECUTION_MODE_HINT: ExecutionMode.PERFORMANCE
[ INFO ] PERFORMANCE_HINT_NUM_REQUESTS: 0
[ INFO ] ENABLE_CPU_PINNING: True
[ INFO ] SCHEDULING_CORE_TYPE: SchedulingCoreType.ANY_CORE
[ INFO ] ENABLE_HYPER_THREADING: True
[ INFO ] EXECUTION_DEVICES: ['CPU']
[ INFO ] CPU_DENORMALS_OPTIMIZATION: False
[ INFO ] CPU_SPARSE_WEIGHTS_DECOMPRESSION_RATE: 1.0
[Step 9/11] Creating infer requests and preparing input tensors
[ WARNING ] No input files were given for input 'sequential_1_input'!. This input will be filled with random values!
[ INFO ] Fill input 'sequential_1_input' with random values
[Step 10/11] Measuring performance (Start inference asynchronously, 12 inference requests, limits: 15000 ms duration)
[ INFO ] Benchmarking in inference only mode (inputs filling are not included in measurement loop).
[ INFO ] First inference took 1.99 ms
[Step 11/11] Dumping statistics report
[ INFO ] Execution Devices:['CPU']
[ INFO ] Count: 178152 iterations
[ INFO ] Duration: 15001.85 ms
[ INFO ] Latency:
[ INFO ] Median: 0.94 ms
[ INFO ] Average: 0.98 ms
[ INFO ] Min: 0.55 ms
[ INFO ] Max: 11.77 ms
[ INFO ] Throughput: 11875.34 FPS
MULTI のベンチマーク: CPU、GPU
最近のインテル CPU では、OpenVINO のマルチデバイス・プラグインを使用して、CPU と iGPU の両方で推論を実行することで、最高のパフォーマンスを実現できる場合があります。GPU でモデルをロードするには CPU よりも少し時間がかかるため、このベンチマークを初めて実行する場合、完了するまでに CPU ベンチマークよりも少し時間がかかります。ベンチマーク・アプリは、--cdir
パラメーターを指定することでキャッシュをサポートします。下のセルでは、モデルは model_cache
ディレクトリーにキャッシュされます。
# Original model - MULTI:CPU,GPU
if "GPU" in core.available_devices:
! benchmark_app -m $model_xml -d MULTI:CPU,GPU -t 15 -api async
else:
print("A supported integrated GPU is not available on this system.")
A supported integrated GPU is not available on this system.
# Quantized model - MULTI:CPU,GPU
if "GPU" in core.available_devices:
! benchmark_app -m $compressed_model_xml -d MULTI:CPU,GPU -t 15 -api async
else:
print("A supported integrated GPU is not available on this system.")
A supported integrated GPU is not available on this system.
# print the available devices on this system
print("Device information:")
print(core.get_property("CPU", "FULL_DEVICE_NAME"))
if "GPU" in core.available_devices:
print(core.get_property("GPU", "FULL_DEVICE_NAME"))
Device information:
Intel(R) Core(TM) i9-10920X CPU @ 3.50GHz
元の IR モデル - CPU
benchmark_output = %sx benchmark_app -m $model_xml -t 15 -api async
# Remove logging info from benchmark_app output and show only the results
benchmark_result = benchmark_output[-8:]
print("\n".join(benchmark_result))
[ INFO ] Count: 57840 iterations
[ INFO ] Duration: 15004.24 ms
[ INFO ] Latency:
[ INFO ] Median: 2.94 ms
[ INFO ] Average: 2.94 ms
[ INFO ] Min: 1.98 ms
[ INFO ] Max: 12.12 ms
[ INFO ] Throughput: 3854.91 FPS
量子化された IR モデル - CPU
benchmark_output = %sx benchmark_app -m $compressed_model_xml -t 15 -api async
# Remove logging info from benchmark_app output and show only the results
benchmark_result = benchmark_output[-8:]
print("\n".join(benchmark_result))
[ INFO ] Count: 178836 iterations
[ INFO ] Duration: 15001.19 ms
[ INFO ] Latency:
[ INFO ] Median: 0.94 ms
[ INFO ] Average: 0.97 ms
[ INFO ] Min: 0.58 ms
[ INFO ] Max: 6.85 ms
[ INFO ] Throughput: 11921.45 FPS
元の IR モデル - MULTI: CPU、GPU
最近のインテル CPU では、OpenVINO のマルチデバイス・プラグインを使用して、CPU と iGPU の両方で推論を実行することで、最高のパフォーマンスを実現できる場合があります。GPU でモデルをロードするには CPU よりも少し時間がかかるため、このベンチマークは CPU ベンチマークよりも完了するまでに少し時間を要します。
if "GPU" in core.available_devices:
benchmark_output = %sx benchmark_app -m $model_xml -d MULTI:CPU,GPU -t 15 -api async
# Remove logging info from benchmark_app output and show only the results
benchmark_result = benchmark_output[-8:]
print("\n".join(benchmark_result))
else:
print("GPU is not available on this system.")
GPU is not available on this system.
量子化された IR モデル - MULTI: CPU、GPU
if "GPU" in core.available_devices:
benchmark_output = %sx benchmark_app -m $compressed_model_xml -d MULTI:CPU,GPU -t 15 -api async
# Remove logging info from benchmark_app output and show only the results
benchmark_result = benchmark_output[-8:]
print("\n".join(benchmark_result))
else:
print("GPU is not available on this system.")
GPU is not available on this system.