vehicle-license-plate-detection-barrier-0123

ユースケースと概要説明

これは、MobileNetV2 + SSD ベースの車両および “バリア” ユースケース用のナンバープレート (中国の) 検出器です。

仕様

メトリック

評価指標 (mAP)

99.52%

AP 車両

99.90%

AP プレート

99.13%

車の状態

前向きの車両

最小のプレート幅

96 ピクセル

検出する最大オブジェクト

200

GFlops

0.271

MParams

0.547

ソース・フレームワーク

TensorFlow*

平均精度 (AP) は、精度/再現率曲線の下の領域として定義されます。評価データセットは BIT-Vehicle です。

入力

元のモデル

入力画像、名前: input、形状: 1, 256, 256, 3、形式: B, H, W, C

説明:

  • B - バッチサイズ

  • H - 画像の髙さ

  • W - 画像の幅

  • C - チャネル数

予想される色の順序: RGB。平均値: [127.5、127.5、127.5]、各チャネルのスケール係数: 127.5

変換されたモデル

入力画像、名前: input、形状: 1, 256, 256, 3、形式: B, H, W, C

説明:

  • B - バッチサイズ

  • H - 画像の髙さ

  • W - 画像の幅

  • C - チャネル数

予想される色の順序は BGR です。

出力

元のモデル

最終出力は、形状: 1, 1, 200, 7、形式: 1, 1, N, 7 のブロブです。ここで、N は検出された境界ボックスの数です。各検出の形式は次のとおりです。
[image_id, label, conf, x_min, y_min, x_max, y_max]

説明:

  • image_id - バッチ内の画像の ID

  • label - 予測されたクラス ID

  • conf - 予測されたクラスの信頼度

  • (x_min, y_min) - 境界ボックスの左上隅の座標

  • (x_max, y_max) - 境界ボックスの右下隅の座標。

変換されたモデル

最終出力は、形状: 1, 1, 200, 7、形式: 1, 1, N, 7 のブロブです。ここで、N は検出された境界ボックスの数です。各検出の形式は次のとおりです。
[image_id, label, conf, x_min, y_min, x_max, y_max]

説明:

  • image_id - バッチ内の画像の ID

  • label - 予測されたクラス ID

  • conf - 予測されたクラスの信頼度

  • (x_min, y_min) - 境界ボックスの左上隅の座標

  • (x_max, y_max) - 境界ボックスの右下隅の座標。

モデルをダウンロードして OpenVINO™ IR 形式に変換

以下の例に示すように、モデルをダウンロードし、必要に応じてモデル・ダウンローダーやその他の自動化ツールによってモデルを OpenVINO™ IR 形式に変換できます。

モデル・ダウンローダーの使用例:

omz_downloader --name <model_name>

モデル・コンバーターの使用例:

omz_converter --name <model_name>

デモの使い方

Open Model Zoo が提供する次のデモでこのモデルを使用して、その機能を確認できます。