person-detection-retail-0013¶
ユースケースと概要説明¶
これは小売シナリオ用の歩行者検知器です。3x3 畳み込みブロックの計算量を削減する深さ方向の畳み込みを含む MobileNetV2 に似たバックボーンを基にしています。1/16 スケールの特徴マップからの単一の SSD ヘッドには、12 個のクラスター化された以前のボックスがあります。
例¶
仕様¶
メトリック |
値 |
---|---|
AP |
88.62% |
ポーズカバレッジ |
直立、画像面と平行 |
隠れた歩行者のサポート |
○ |
オクルージョン・カバレッジ |
<50% |
歩行者の最低身長 |
100 ピクセル (1080p) |
GFlops |
2.300 |
MParams |
0.723 |
ソース・フレームワーク |
Caffe* |
平均精度 (AP) は、精度/再現率曲線の下の領域として定義されます。
入力¶
画像、名前: data
、形状: 1, 3, 320, 544
、形式: B, C, H, W
。
説明:
B
- バッチサイズC
- チャネル数H
- 画像の髙さW
- 画像の幅
予想される色の順序は BGR
です。
出力¶
最終出力は、形状: 1, 1, 200, 7
、形式: 1, 1, N, 7
のブロブです。ここで、N
は検出された境界ボックスの数です。各検出は [image_id
, label
, conf
, x_min
, y_min
, x_max
, y_max
] の形式です。
説明:
image_id
- バッチ内の画像の IDlabel
- 予測されたクラス ID (1 - 人物)conf
- 予測されたクラスの信頼度(
x_min
,y_min
) - 境界ボックスの左上隅の座標(
x_max
,y_max
) - 境界ボックスの右下隅の座標
デモの使い方¶
Open Model Zoo が提供する次のデモでこのモデルを使用して、その機能を確認できます。
法務上の注意書き¶
* その他の社名、製品名などは、一般に各社の表示、商標または登録商標です。